Improved Electrochemical Performance of Nd3+- Doped LiNi0.5Mn1.5O4 Cathode Material for 5 V Lithium-Ion Batteries

Article Preview

Abstract:

Spinel powders of Nd-doped LiNi0.5NdxMn1.5xO4 with different Nd3+ contents (x = 0, 0.01, and 0.02) have been synthesized by a solid-state ball milling method. The samples was characterized by XRD, SEM and EDS. XRD shows the doping of Nd3+ did not destroy the formation of spinel LNMO.The results show that LiNi0.5Nd0.01Mn1.49O4 sample exhibits a higher rate performance with specific discharge capacities of 134.8, 137.2, 136.5, 130.4, 123.8, 106.4, and 83.1 mAh g−1 at 0.2, 0.5, 1, 2, 3, 5, and 7 C (1 C = 140 mAh g−1), respectively. The results indicate that the Nd3+ doping could reduce the electrode polarization and enhance the rate capacities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-249

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. M. Chiang, Science, 330, 1485 (2010).

Google Scholar

[2] J.M. Tarascon, M. Armand, Nature, 414, 359 (2001).

Google Scholar

[3] A. Patil, V. Patil, D. W. Shin, J. W. Choi, D. S. Paik, S. J. Yoon, Mater. Res. Bull. 43, 1913 (2008).

Google Scholar

[4] J. B. Goodenough, Y. Kim, J. Power Source, s 196, 6688 (2011).

Google Scholar

[5] J. Wang, W. Q. Lin, B. H. Wu, J. B. Zhao, Electrochimica Acta, 2014, 145: 245–253.

Google Scholar

[6] H. Y. Sun, X. Kong, B. S. Wang, T. B. Luo, G. Y. Liu, Ceramics International, 2018, 44: 4603−4610.

Google Scholar

[7] J. J. Shiu, W. K. Pang, S. H. Wu, Journal of Power Sources, 2013, 244: 35–42.

Google Scholar

[8] M. H. Liu, H. T. Huang, C. M. Lin, J. M. Chen, S. C. Liao, Electrochimica Acta, 2014, 120: 133–139.

Google Scholar

[9] W. Wu, X. Qin, J. L. Guo, J. F. Wang, H. Y. Yang, L. Wang, Journal of Rare Earths, 2017, 35: 887–895.

Google Scholar

[10] J. S. Chae, M. R. Jo Y. I. Kim, D. W. Han, S. M. Park, Y. M. Kang, K. C. Roh, Journal of Industrial and Engineering Chemistry, 2015, 21: 731–735.

Google Scholar

[11] W. Wu, J. L, Guo, X. Qin, C. B. Bi, J. F. Wang, L. Wang, G. C. Liang, Journal of Alloys and Compounds, 2017, 721: 721–730.

Google Scholar

[12] P. Wu, X. L. Zeng, C. Zhou, G. F. Gu, D. G. Tong, Materials Chemistry and Physics, 2013, 138: 716–723.

Google Scholar

[13] M. Y. Mo, K. S. Hui, X. T. Hong, J. S. Guo, C. C. Ye, A. J. Li, N. Q. Hu, Z. Z. Huang, J. H. Jiang, J. Z. Liang, H. Y. Chen, Applied Surface Science, 2014, 290: 412–418.

DOI: 10.1016/j.apsusc.2013.11.094

Google Scholar

[14] A. Howeling, S. Glatthaar, D. Notzel, Jo. R. Binder, Journal of Power Sources, 2015, 274: 1267–1275.

Google Scholar

[15] S. P. Feng, X. Kong, H. Y. Sun, B. S. Wang, T. B. Luo, G. Y. Liu. Journal of Alloys and Compounds, 2018, 749: 1009−1018.

Google Scholar

[16] M. Bini, P. Boni, P. Mustarelli, I. Quinzeni, G. Bruni, D. Capsoni, Solid State Ionics, 2018, 320: 1–6.

DOI: 10.1016/j.ssi.2018.02.026

Google Scholar

[17] Y. Yang, S. Li, Q. Zhang, Y. Zhang, S. M. Xu, Industrial & Engineering Chemistry Research, 2017, 56: 175−182.

Google Scholar

[18] J. Mao, K. H. Dai, Mi. J. Xuan, G. S. Shao, R. M. Qiao, W. L. Yang, V. S. Battaglia, G. Liu, ACS Appl. Mater. Interfaces, 8 (2016) 9116–9124.

Google Scholar

[19] X. L. Liu, D. Li , Q. L. Mo, X. Y. Guo, X. X. Yang, G. X. Chen, S. W. Zhong, Journal of Alloys and Compounds, 609 (2014) 54–59.

Google Scholar

[20] Y. Luo, T. L. Lu , Y. X. Zhang, L. Q. Yan, S. S. Mao, J. Y. Xie, Journal of Alloys and Compounds, 703 (2017) 289-297.

Google Scholar

[21] N. K. Yavuz, M. Yavuz, S. Indris, N. N. Bramnik, M. Knapp, O. Dolotko, B. Das, H. Ehrenberg, A. Bhaskar, Journal of Power Sources, 2016, 327: 507–518.

DOI: 10.1016/j.jpowsour.2016.07.047

Google Scholar

[22] Y. F. Deng, S. X. Zhao, Y. H. Xu, K. Gao, C. W. Nan, Chemistry of Materials. 2015, 27: 7734−7742.

Google Scholar

[23] Y. H. Xu, S. X. Zhao, Y. F. Deng, H. Deng, C. W. Nan, Journal of Materiomics, 2016, 2: 265–272.

Google Scholar

[24] Y. Luo, H. Y. Li, T. L. Lu, Y. X. Zhang, S. S. Mao, Z. Liu, W. Wen, J. J Xie, L. Q. Yan, Electrochimica Acta, 2017, 238: 237–245.

Google Scholar

[25] W K. Kim, D. W. Han, W. H. Ryu, S. J. Lim, J. Y. Eom, H. S. Kwon, Journal of Alloys and Compounds, 2014, 592: 48–52.

Google Scholar

[26] Y. K. Sun, S. W. Oh, C. S. Yoon, H. J. Bang, J. Prakash, Journal of Power Sources, 161 (2006) 19–26.

Google Scholar

[27] S. T. Yang, J. H. Jia, L. Ding, M. C. Zhang, Electrochimica Acta, 48 (2003) 569-573.

Google Scholar

[28] X. B. Jia, M. Yan, Z. Y. Zhou, X. L. Chen, C. Yao, D. Li, D. M. Chen, Y. Chen, Electrochimica Acta, 254 (2017) 50-58.

Google Scholar