A Theoretical Investigation on Second-Order NLO Properties of Organic Substitutions of [Mo6O19]2- and [MoW5O19]2-

Article Preview

Abstract:

In this study, density functional theory (DFT) was used to calculate second-order polarizabilities and second-order polarizabilities densities of a series of organic substitution for Lindqvist-type polyoxometalates (POMs), and the nonlinear optical (NLO) properties was also analyzed. We found that βzzz has the main contribution to β value. The expansion of molecular structure on z-axis greatly increased second-order polarizabilities. Both the size of the organic segments and metal hybridization exert an influence on β value. The analysis on the second-order polarizabilities density is used to explain the NLO phenomenon. In the present investigation, metal hybridization and π-conjugation changed the contribution of βzzz value from different parts. The results of this work will contribute to the potential applications in high-performance NLO materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

268-273

Citation:

Online since:

June 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Clays K. Molecular Nonlinear Optics:[J]. Journal of Nonlinear Optical Physics & Materials, 2008, 12(04):475-494.

Google Scholar

[2] Hu G, Miao H, Mei H, et al. Two novel bi-functional hybrid materials constructed from POMs and a Schiff base with excellent third-order NLO and catalytic properties.[J]. Dalton Trans, 2016, 45(19):7947-7951.

DOI: 10.1039/c6dt00138f

Google Scholar

[3] Yao C, Yan L K, Guan W, et al. Prediction of second-order optical nonlinearity of porphyrin-metal-polyoxometalate sandwich compounds[J]. Dalton Trans, 2010, 39(33):7645-7649.

DOI: 10.1039/c002547j

Google Scholar

[4] Hu G, Miao H, Mei H, et al. Two novel bi-functional hybrid materials constructed from POMs and a Schiff base with excellent third-order NLO and catalytic properties.[J]. Dalton Trans, 2016, 45(19):7947-7951.

DOI: 10.1039/c6dt00138f

Google Scholar

[5] Bulat F A, Torolabbé A, Champagne B, et al. Density-functional theory (hyper)polarizabilities of push-pull pi-conjugated systems: treatment of exact exchange and role of correlation.[J]. Journal of Chemical Physics, 2005, 123(1):B864.

DOI: 10.1063/1.1926275

Google Scholar

[6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).

Google Scholar

[7] Wu H Y, Chaudhari A, Lee S L. Theoretical studies on nonlinear optical properties of formaldehyde oligomers by ab initio and density functional theory methods.[J]. Journal of Computational Chemistry, 2010, 26(15):1543-1564.

DOI: 10.1002/jcc.20294

Google Scholar