[1]
Y. Wang, G. Wang, K. Song and K. Zhang, Effect of Ni addition on the wettability and microstructure of Sn2.5Ag0.7Cu0.1RE solder alloy, Mater. Design 119 (2017) 219-224.
DOI: 10.1016/j.matdes.2017.01.046
Google Scholar
[2]
Q. Guo, Z. Zhao and C. Shen, Comparison study on microstructure and mechanical properties of Sn-10Bi and Sn-Ag-Cu solder alloys and joints, Microelectron. Reliab 78 (2017) 72-79.
DOI: 10.1016/j.microrel.2017.08.004
Google Scholar
[3]
G. Chen, F. Wu, C. Liu, V. V. Silberschmidt, Y.C. Chan, Microstructures and properties of new Sn-Ag-Cu lead-free solder with Ni-coated graphene nanosheets, J. Alloys Compd 656 (2016) 500-509.
DOI: 10.1016/j.jallcom.2015.09.178
Google Scholar
[4]
M.Y. Xiong, L. Zhang, Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging, J. Mater Sci. 54(2019) 1741-1768.
DOI: 10.1007/s10853-018-2907-y
Google Scholar
[5]
K. L. Liu, P. C. Shih, IMC formation on BGA package with Sn-Ag-Cu and Sn-Ag-Cu-Ni-Ge solder balls, J. Alloys Compd 452 (2008) 291-297.
DOI: 10.1016/j.jallcom.2006.11.036
Google Scholar
[6]
S. Chellvarajoo, M. Z. Abdullah, Microstructure and mechanical properties of Pb-free Sn–3.0Ag–0.5Cu solder pastes added with NiO nanoparticles after reflow soldering process, Mater. Design, 90 (2016) 499-507.
DOI: 10.1016/j.matdes.2015.10.142
Google Scholar
[7]
M. Yang, Y. H. Ko, J. Bang, T.S. Kim, C.W. Lee, M. Li, Effects of Ag addition on solid-state interfacial reactions between Sn-Ag-Cu solder and Cu substrate, Mater. Charact. 124 (2017) 250-259.
DOI: 10.1016/j.matchar.2017.01.004
Google Scholar
[8]
J.W. Yoon, B. I. Noh, B. K. Kim, C.C. Shur, S.B. Jung, Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints, J. Alloys Compd. 486 (2009) 142-147.
DOI: 10.1016/j.jallcom.2009.06.159
Google Scholar
[9]
H. Dai, S. Wang, G. Zhu, P. Zeng, A new route formanufacturing monodispersed spherical copper particles for electronicapplications, Mater. Mater. Lett. 118 (2014) 173-175.
DOI: 10.1016/j.matlet.2013.12.072
Google Scholar
[10]
Y. Wen, X. Zhao, Z. Chen, Y. Gu, Y. Wang, Z. Chen, X. Wang, Reliability enhancement of Sn-1.0Ag-0.5Cu nano-composite solders by adding multiple sizes of TiO2 nanoparticles, J. Alloys Compd. 696 (2017) 799-807.
DOI: 10.1016/j.jallcom.2016.12.037
Google Scholar
[11]
M. Yang, H. Ji, S. Wang, Y.H. Ko, C.W. lee, J. Xu, M. Li, Effects of Ag content on the interfacial reactions between liquid Sn-Ag-Cu solders and Cu substrates during soldering, J. Alloys Compd. 679 (2016) 18-25.
DOI: 10.1016/j.jallcom.2016.03.177
Google Scholar
[12]
N. D. Chowdhury, K. S. Ghosh, Calorimetric Studies of Ag-Sn-Cu dental amalgam alloy powders and their amalgams, J Them Anal Colorim. 130(2017) 623-637.
DOI: 10.1007/s10973-017-6438-6
Google Scholar
[13]
B. Zhao, W. Dong, H. Ji, Q. Zhang, L. Zhang, M. Wu, Q. Zhai, Y. Gao, Highly spherical, mono-sized Sn-Ag-Cu droplets by pulsated orifice ejection method, MRS commun. 7(2017) 709-714.
DOI: 10.1557/mrc.2017.65
Google Scholar
[14]
A. Wattanakornphaiboon, R. Canyook, K. Fakpan, Effect of SnO2 reinforcement on creep property of Sn-Ag-Cu solders, Mater Today. 5(2018) 9213-9219.
DOI: 10.1016/j.matpr.2017.10.092
Google Scholar
[15]
C.C. Fu, C.C. Chen, Investigations of wetting properties of Ni-V and Ni-Co alloys by Sn, Sn-Pb, Sn-Cu, and Sn-Ag-Cu solders, J Taiwan Inst Chem E. 42(2011) 350-355.
DOI: 10.1016/j.jtice.2010.07.014
Google Scholar
[16]
B.L. Silva, M.G.C. Xavier, A. Garacia, J.E. Spinelli, Cu and Ag additions affecting the solidification microstructure and tensile properties of Sn-Bi lead-free solder alloys, Mater Sci Eng A. 705(2017) 325-334.
DOI: 10.1016/j.msea.2017.08.059
Google Scholar
[17]
G. Chen, F. Wu, C. Liu, W. Xia, H. Liu, Effects of fullerenes reinforcement on the performance, Mater Sci Eng A. 636(2015) 484-492.
Google Scholar
[18]
N. Yodoshi, R. Yamada, A. Kawasaki, A. Makino, Evaluation of critical cooling rate of Fe76Si9B10P5 metallic glass by containerless solidification process, J. Alloys Compd. 643 (2015) 52-57.
DOI: 10.1016/j.jallcom.2015.04.088
Google Scholar
[19]
S. Masuda, K. Takagi, W. Dong, K. Yamanaka, A. Kawasaki, Solidification behavior of falling germanium droplets produced bypulsated orifice ejection method, J. Cryst. Growth. 310 (2008) 2915-2922.
DOI: 10.1016/j.jcrysgro.2008.01.050
Google Scholar
[20]
I.U. Haq, K. Akhtar, K. Malook, Synthesis and characterization of monodispersed copper oxide and their precursor powder, Mater. Res. Bull. 57 (2014) 121-126.
DOI: 10.1016/j.materresbull.2014.05.028
Google Scholar
[21]
S. Lagutkin, L. Achelis, S. Sheikhaliev, V. Uhlenwinkel, V. Srivastava, Atomization process for metal powder, Mater Sci Eng A. 383(2015) 1-6.
DOI: 10.1016/j.msea.2004.02.059
Google Scholar
[22]
C. Lei, H. Huang, Z. Cheng, S. Tang, Y. Du, Mono-dispersespherical Cu–Zn powder fabricated via the low wettability of liquid/solid interface, Appl. Surf. Sci. 357 (2015) 167-171.
DOI: 10.1016/j.apsusc.2015.09.035
Google Scholar
[23]
Z. Cheng, C. Lei, H. Huang, S. Tang, Y. Du, The formation of ultrafine spherical metal powders using a low wettability strategyof solid–liquid interface, Mater. Des. 97 (2016) 324-330.
DOI: 10.1016/j.matdes.2016.02.100
Google Scholar
[24]
Y.Y. Hu, W. Yue, J.J. Li, W. Dong, C. Li, B.Q. Ma, C. Liu, J.J. Han, Preparation and characterization of monosized Cu–Sn spherical alloy particles by pulsated orifice ejection method, J. Mater Res. 33(2018) 2835-2843.
DOI: 10.1557/jmr.2018.183
Google Scholar
[25]
Ohnuma, M. Miyashita, K. Anzai, X.J. Liu, H. Ohtani, R. Kainuma, K. Ishida, Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloy, J Electron Mater. 29(2000) 1137-1144.
DOI: 10.1007/s11664-000-0004-9
Google Scholar
[26]
H. Xu, Z. Yuan, Interfacial Reaction Kinetics between Liquid Sn-Ag-Cu Alloys and Cu Substrate, Rare Metal Mater. Eng. 43(2014) 2893-2897.
DOI: 10.1016/s1875-5372(15)60028-5
Google Scholar
[27]
N. Yodoshi, R. Yamada, A. Kawasaki, A. Makino, Evaluation of critical cooling rate of Fe76Si9B10P5 metallic glass by containerless solidification process, J. Alloys Compd. 643 (2015) 52-57.
DOI: 10.1016/j.jallcom.2015.04.088
Google Scholar