MnO2/HF/HNO3/H2O System for High-Performance Texturization on Multi-Crystalline Silicon

Article Preview

Abstract:

It was found that the addition of MnO2 particles into the HF/HNO3/H2O system could significantly improve the texturization etching performance on multi-crystalline silicon (mc-Si) wafer. For a wide component ratio range of HF/HNO3/H2O from HF-rich to HNO3-rich, by optimizing the MnO2 usage and the etching time, the addition of MnO2 particles always reduced the texture reflectance greatly. Low weighted average surface reflectance (Ra) for the AM1.5G sun spectrum in the wavelength range of 380–1100 nm was achieved on both the slurry wire sliced (SWS) mc-Si and the diamond wire sliced (DWS) mc-Si. Due to its excellent effect and simple processing, the MnO2/HF/HNO3/H2O etching system can be expected as a candidate for high-performance texturization on mc-Si wafer, especially on DWS mc-Si wafer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-267

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Kulesza, P. Panek, P. Zieba, Time efficient texturization of multicrystalline silicon in the HF/HNO3 solutions and its effect on optoelectronic parameters of solar cells, Arch Civ Mech Eng, 14 (2014) 595-601.

DOI: 10.1016/j.acme.2014.02.007

Google Scholar

[2] J. Jin, H. Shen, P. Zheng, K.S. Chan, X. Zhang, H. Jin, >20.5% Diamond Wire Sawn Multicrystalline Silicon Solar Cells With Maskless Inverted Pyramid Like Texturing, IEEE Journal of Photovoltaics, 7 (2017) 1264-1269.

DOI: 10.1109/jphotov.2017.2717820

Google Scholar

[3] H. Jansen, M.D. Boer, J. Burger, R. Legtenberg, M. Elwenspoek, The black silicon method II:The effect of mask material and loading on the reactive ion etching of deep silicon trenches, in: International Conference on Micro-& Nano-engineering, (1994).

DOI: 10.1016/0167-9317(94)00149-o

Google Scholar

[4] G.N. Huang Z, Werner Metal-Assisted Chemical Etching of Silicon_ A Review, Adv. Mater., 23 (2011) 285-308.

Google Scholar

[5] H. Li, Fabrication of ultra-high aspect ratio (>160:1) silicon nanostructures by using Au metal assisted chemical etching, Journal of Micromechanics and Microengineering, (2017).

DOI: 10.1088/1361-6439/aa96c4

Google Scholar

[6] X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, X. Su, 18.45%-Efficient Multi-Crystalline Silicon Solar Cells with Novel Nanoscale Pseudo-Pyramid Texture, Adv. Funct. Mater., 24 (2014) 6708-6716.

DOI: 10.1002/adfm.201401589

Google Scholar

[7] S.K. Srivastava, P. Singh, M. Yameen, P. Prathap, C.M.S. Rauthan, Vandana, P.K. Singh, Antireflective ultra-fast nano scale texturing for efficient multi-crystalline silicon solar cells, Solar Energy, 115 (2015) 656-666.

DOI: 10.1016/j.solener.2015.03.010

Google Scholar

[8] J. Yoo, G. Yu, J. Yi, Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE), Sol. Energy Mater. Sol. Cells, 95 (2011) 2-6.

DOI: 10.1016/j.solmat.2010.03.029

Google Scholar

[9] G. Du, L. Zhou, P. Rossetto, Y. Wan, Hard inclusions and their detrimental effects on the wire sawing process of multicrystalline silicon, Solar Energy Materials & Solar Cells, 91 (2007) 1743-1748.

DOI: 10.1016/j.solmat.2007.06.001

Google Scholar

[10] B. Meinel, T. Koschwitz, C. Blocks, J. Acker, Comparison of diamond wire cut and silicon carbide slurry processed silicon wafer surfaces after acidic texturisation, Mater. Sci. Semicond. Process., 26 (2014) 93-100.

DOI: 10.1016/j.mssp.2014.03.046

Google Scholar