Effect of Li2O-Al2O3-Bi2O3-SiO2 Glass on Electromagnetic Properties of Ni0.16Cu0.22Zn0.62Fe2O4-BaTiO3 Composites at Low Sintering Temperature

Article Preview

Abstract:

In the present work, the composite material Ni0.16Cu0.22Zn0.62Fe2O4-BaTiO3 (NCZF-BTO, in a 10:1) was synthesized with different additive amounts of Li2O-Al2O3-Bi2O3-SiO2 (LABS) glass using a traditional solid-state reaction method and sintered at 900 °C. The synthesized composites were then comparatively investigated; in addition to their phases and density, their magnetic and dielectric properties, which include the saturation magnetization(4πMs), coercivity (Hc), permeability (μ'), quality factor (Q), dielectric constant (ε')and dielectric loss (tan δ) were characterized. In contrast to the undoped composites, the performance of the LABS-doped samples were enhanced. The optimal performance was obtained when the LABS glass content reached 1.0wt%. At this level of doping, the bulk density increased from 4.883 g/cm3 to 5.021g/cm3, the saturation magnetization (4πMs) increased from 3819.5 to 4113.6Gs, the coercivity (Hc) decreased from 111 to 106.5A/m, the permeability (μ') at 10 MHz increased from 25.8 to 61.1, and the dielectric constant (ε') at 10 MHz increased from 18.9 to 23.4. On further increasing the LABS glass content to1.5 wt%, the performance of the composite generally deteriorated, except for the dielectric constant,which increased to 27.1. In short, the optimal LABS glass doping ratio was determined to be 1.0 wt%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-255

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.B. Yang, H. Wang, L. He, X. Yao. Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability. J. Appl. Phys. 2010, 108, 074105.

DOI: 10.1063/1.3490782

Google Scholar

[2] Y. Ha, M.C. Choi, I. Kim, C.S. Ha, Y. Kim, M. Han. Microstructure and properties of rigid rod-like polyimide/ flexible coil-like poly(amide-imide) molecular composite films. Macromol. Res. 2010, 18, 14–21.

DOI: 10.1007/s13233-009-0048-5

Google Scholar

[3] G. Kumar, S.K. Apte, S.N. Garaje, M.V. Kulkarni, S.M. Mahajan, B.B. Kale. Magneto-optic characteristics of ferric oxide quantum-dot-phosphate glass nanocomposite. Appl. Phys. A. 2010, 98, 531–535.

DOI: 10.1007/s00339-009-5481-y

Google Scholar

[4] R.G. Veliyev, M.Y. Seyidov, N.Z. Gasanov, F.M. Seyidov. The magneto-dielectric properties of compounds and alloys in the systems of TlInS2-TlFeS2, TlInS2-TlFeSe2. J. Alloy Compd. 2010, 506, 800–803.

DOI: 10.1016/j.jallcom.2010.07.074

Google Scholar

[5] X.W. Qi, J. Zhou, B.R. Li, Y.C. Zhang, Z.X. Yue, Z.L. Gui, L.T. Li, Preparation and spontaneous polarization-magnetization of a new ceramic ferroelectric-ferromagnetic composite, J. Am. Ceram. Soc. 87 (2004) 1848–1852.

DOI: 10.1111/j.1151-2916.2004.tb06329.x

Google Scholar

[6] L.N. Su, P. Liu, Y. He, J.P. Zhou, L. Cao, C. Liu, H.W. Zhang, Electrical and magnetic properties of low-temperature sintered xBa0.6Sr0.4TiO3 + (1-x)Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98 composite ceramics, J. Alloys Compd. 494 (2010) 330–335.

DOI: 10.1016/j.jallcom.2010.01.029

Google Scholar

[7] Y. He, H.W. Zhang, Y.Y. Wang, W.W. Ling, C.H. Mu, F.M. Bai, P. Liu, Electrical and magnetic properties of NiCuZn-CaCu3Ti4O12 composites doped with Bi2O3, J. Alloys Compd. 504 (2010) 435–439.

DOI: 10.1016/j.jallcom.2010.06.001

Google Scholar

[8] Q. Zhao, H.W. Zhang, J. Li, F. Xu, Y.L. Liao, C. Liu, H. Su, Low-temperature sintering synthesis and electromagnetic properties of NiCuZn/BaTiO3 composite materials, J. Alloys Compd.788(2019) 44-49.

DOI: 10.1016/j.jallcom.2019.01.309

Google Scholar

[9] R. Rani, P. Kumar, S. Singh, J. K. Juneja, K. K. Raina, Ferroelectric Properties of Microwave Processed PZT-NiZn Ferrite Composites, Integrated Ferroelectrics. 122 (2010) 45-51.

DOI: 10.1080/10584587.2010.504399

Google Scholar

[10] Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, Springer, New York, (2005).

DOI: 10.1007/b101196

Google Scholar

[11] R.D. Guo, Z. Yu, Y. Yang, X.N Jiang, K. Sun, C.J. Wu. Z.Y. Xu, Z.W. Lan, Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite, J. Alloy. Compd. 589 (2014) 1–4.

DOI: 10.1016/j.jallcom.2013.11.148

Google Scholar

[12] J.J. Du, G.C. Yao, Y.H. Liu, J. Ma, G.Y. Zu, Influence of V2O5 as an effective dopant on the sintering behavior and magnetic properties of NiFe2O4 ferrite ceramics, Ceram. Int. 38 (2012) 1707–1711.

DOI: 10.1016/j.ceramint.2011.08.061

Google Scholar

[13] Y.Z. Wang, H.Q. Zhou, H.Q. Qi, L.C. Ren, Z.M. Xu, Z.X. Yue, Sintering, microstructure and magnetic properties of low temperature co-fired NiCuZn ferrites with Nb2O5 and MoO3 additions, Ceram. Int. 41 (2015) 12253–12257.

DOI: 10.1016/j.ceramint.2015.06.048

Google Scholar

[14] B. Sun, F.G. Chen, W.D. Yang, H.Q. Shen, D. Xie, Effects of nano-TiO2 and normal size TiO2 additions on the microstructure and magnetic properties of manganese-zinc power ferrites, J. Magn. Magn. Mater. 349 (2014) 180–187.

DOI: 10.1016/j.jmmm.2013.09.006

Google Scholar

[15] W.W. Ling, H.W. Zhang, Y.X. Li, D.M. Chen, Q.Y. Wen, J. Shen, Effect of B2O3-Bi2O3-SiO2-ZnO glass on the dielectric and magnetic properties of ferroelectric/ferromagnetic composite for low temperature cofired ceramic technology, J. Appl. Phys. 107 (2010) 09D911.

DOI: 10.1063/1.3360347

Google Scholar

[16] F. Xie, L.J. Jia, F. Xu, J. Li, G.W. Gan, H.W. Zhang, Improved sintering characteristics and gyromagnetic properties of low-temperature sintered Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrite ceramics modified with Bi2O3-ZnO-B2O3 glass additive, Ceram. Int. 44 (2018) 13122–13128.

DOI: 10.1016/j.ceramint.2018.04.134

Google Scholar

[17] T.C. Zhou, H.W. Zhang, C. Liu, L.C. Jin, F. Xu, Y.L. Liao, N. Jia, Y. Wang, G.W. Gan, H. Su, L.J. Jia. Li2O-B2O3-SiO2-CaO-Al2O3 and Bi2O3 co-doped gyromagnetic Li0.43Zn0.27Ti0.13Fe2.17O4 ferrite ceramics for LTCC Technology, Ceram. Int. 42 (2016) 16198–16204.

DOI: 10.1016/j.ceramint.2016.07.141

Google Scholar

[18] X.M. Cui, J. Zhou, B. Li, Z.F. Tong, Co-firing behavior and interfacial structure of BaO-TiO2-B2O3-SiO2 glass-ceramics/NiCuZn ferrite composites, Materials and Manufacturing Processes. 22 (2007) 251–255.

DOI: 10.1080/10426910601134088

Google Scholar

[19] Q. Luo, H. Su, X.L. Tang, Effects of Bi2O3 addition on power loss characteristics of low-temperature-fired NiCuZn ferrites, Ceram. Int. 43 (2017) 16005–16009.

DOI: 10.1016/j.ceramint.2018.06.035

Google Scholar

[20] X.F. Luo, L.C. Ren, Y.S. Xia, Y.K. Hu, W.Y. Gong, M.C. Cai, H.Q. Zhou, Microstructure, sinterability and properties of CaO-B2O3-SiO2 glass/Al2O3 composites for LTCC application, Ceram. Int. 44 (2018) 6791e6795.

DOI: 10.1016/j.ceramint.2017.02.096

Google Scholar

[21] Q. Zhao, H.W. Zhang, F. Xu, Y.L. Liao, X.Y. Wang, H. Su, Y.X. Li, J. Li, Low-temperature sintering and magnetic properties of MABS glass doped Li0.35Zn0.3Mn0.05Ti0.1Fe2.05O4 ferrites, J. Alloys Compd.764 (2018) 834-839.

DOI: 10.1016/j.jallcom.2018.06.080

Google Scholar

[22] J.L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s, Physica, 14 (1948) 207.

DOI: 10.1016/0031-8914(48)90038-x

Google Scholar

[23] H. Su, H.W. Zhang, X.L. Tang, Effects of Bi2O3-WO3 additives on sintering behaviors and magnetic properties of NiCuZn ferrites, Mater. Sci. Eng. B 117 (2005) 231–234.

DOI: 10.1016/j.mseb.2004.11.028

Google Scholar

[24] M. Drofenik, A. Znidarsic, D. Makovec, Influence of the Addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites, J. Am. Ceram. Soc. 81(1998) 2841–2848.

DOI: 10.1111/j.1151-2916.1998.tb02704.x

Google Scholar