[1]
H.B. Yang, H. Wang, L. He, X. Yao. Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability. J. Appl. Phys. 2010, 108, 074105.
DOI: 10.1063/1.3490782
Google Scholar
[2]
Y. Ha, M.C. Choi, I. Kim, C.S. Ha, Y. Kim, M. Han. Microstructure and properties of rigid rod-like polyimide/ flexible coil-like poly(amide-imide) molecular composite films. Macromol. Res. 2010, 18, 14–21.
DOI: 10.1007/s13233-009-0048-5
Google Scholar
[3]
G. Kumar, S.K. Apte, S.N. Garaje, M.V. Kulkarni, S.M. Mahajan, B.B. Kale. Magneto-optic characteristics of ferric oxide quantum-dot-phosphate glass nanocomposite. Appl. Phys. A. 2010, 98, 531–535.
DOI: 10.1007/s00339-009-5481-y
Google Scholar
[4]
R.G. Veliyev, M.Y. Seyidov, N.Z. Gasanov, F.M. Seyidov. The magneto-dielectric properties of compounds and alloys in the systems of TlInS2-TlFeS2, TlInS2-TlFeSe2. J. Alloy Compd. 2010, 506, 800–803.
DOI: 10.1016/j.jallcom.2010.07.074
Google Scholar
[5]
X.W. Qi, J. Zhou, B.R. Li, Y.C. Zhang, Z.X. Yue, Z.L. Gui, L.T. Li, Preparation and spontaneous polarization-magnetization of a new ceramic ferroelectric-ferromagnetic composite, J. Am. Ceram. Soc. 87 (2004) 1848–1852.
DOI: 10.1111/j.1151-2916.2004.tb06329.x
Google Scholar
[6]
L.N. Su, P. Liu, Y. He, J.P. Zhou, L. Cao, C. Liu, H.W. Zhang, Electrical and magnetic properties of low-temperature sintered xBa0.6Sr0.4TiO3 + (1-x)Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98 composite ceramics, J. Alloys Compd. 494 (2010) 330–335.
DOI: 10.1016/j.jallcom.2010.01.029
Google Scholar
[7]
Y. He, H.W. Zhang, Y.Y. Wang, W.W. Ling, C.H. Mu, F.M. Bai, P. Liu, Electrical and magnetic properties of NiCuZn-CaCu3Ti4O12 composites doped with Bi2O3, J. Alloys Compd. 504 (2010) 435–439.
DOI: 10.1016/j.jallcom.2010.06.001
Google Scholar
[8]
Q. Zhao, H.W. Zhang, J. Li, F. Xu, Y.L. Liao, C. Liu, H. Su, Low-temperature sintering synthesis and electromagnetic properties of NiCuZn/BaTiO3 composite materials, J. Alloys Compd.788(2019) 44-49.
DOI: 10.1016/j.jallcom.2019.01.309
Google Scholar
[9]
R. Rani, P. Kumar, S. Singh, J. K. Juneja, K. K. Raina, Ferroelectric Properties of Microwave Processed PZT-NiZn Ferrite Composites, Integrated Ferroelectrics. 122 (2010) 45-51.
DOI: 10.1080/10584587.2010.504399
Google Scholar
[10]
Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, Springer, New York, (2005).
DOI: 10.1007/b101196
Google Scholar
[11]
R.D. Guo, Z. Yu, Y. Yang, X.N Jiang, K. Sun, C.J. Wu. Z.Y. Xu, Z.W. Lan, Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite, J. Alloy. Compd. 589 (2014) 1–4.
DOI: 10.1016/j.jallcom.2013.11.148
Google Scholar
[12]
J.J. Du, G.C. Yao, Y.H. Liu, J. Ma, G.Y. Zu, Influence of V2O5 as an effective dopant on the sintering behavior and magnetic properties of NiFe2O4 ferrite ceramics, Ceram. Int. 38 (2012) 1707–1711.
DOI: 10.1016/j.ceramint.2011.08.061
Google Scholar
[13]
Y.Z. Wang, H.Q. Zhou, H.Q. Qi, L.C. Ren, Z.M. Xu, Z.X. Yue, Sintering, microstructure and magnetic properties of low temperature co-fired NiCuZn ferrites with Nb2O5 and MoO3 additions, Ceram. Int. 41 (2015) 12253–12257.
DOI: 10.1016/j.ceramint.2015.06.048
Google Scholar
[14]
B. Sun, F.G. Chen, W.D. Yang, H.Q. Shen, D. Xie, Effects of nano-TiO2 and normal size TiO2 additions on the microstructure and magnetic properties of manganese-zinc power ferrites, J. Magn. Magn. Mater. 349 (2014) 180–187.
DOI: 10.1016/j.jmmm.2013.09.006
Google Scholar
[15]
W.W. Ling, H.W. Zhang, Y.X. Li, D.M. Chen, Q.Y. Wen, J. Shen, Effect of B2O3-Bi2O3-SiO2-ZnO glass on the dielectric and magnetic properties of ferroelectric/ferromagnetic composite for low temperature cofired ceramic technology, J. Appl. Phys. 107 (2010) 09D911.
DOI: 10.1063/1.3360347
Google Scholar
[16]
F. Xie, L.J. Jia, F. Xu, J. Li, G.W. Gan, H.W. Zhang, Improved sintering characteristics and gyromagnetic properties of low-temperature sintered Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrite ceramics modified with Bi2O3-ZnO-B2O3 glass additive, Ceram. Int. 44 (2018) 13122–13128.
DOI: 10.1016/j.ceramint.2018.04.134
Google Scholar
[17]
T.C. Zhou, H.W. Zhang, C. Liu, L.C. Jin, F. Xu, Y.L. Liao, N. Jia, Y. Wang, G.W. Gan, H. Su, L.J. Jia. Li2O-B2O3-SiO2-CaO-Al2O3 and Bi2O3 co-doped gyromagnetic Li0.43Zn0.27Ti0.13Fe2.17O4 ferrite ceramics for LTCC Technology, Ceram. Int. 42 (2016) 16198–16204.
DOI: 10.1016/j.ceramint.2016.07.141
Google Scholar
[18]
X.M. Cui, J. Zhou, B. Li, Z.F. Tong, Co-firing behavior and interfacial structure of BaO-TiO2-B2O3-SiO2 glass-ceramics/NiCuZn ferrite composites, Materials and Manufacturing Processes. 22 (2007) 251–255.
DOI: 10.1080/10426910601134088
Google Scholar
[19]
Q. Luo, H. Su, X.L. Tang, Effects of Bi2O3 addition on power loss characteristics of low-temperature-fired NiCuZn ferrites, Ceram. Int. 43 (2017) 16005–16009.
DOI: 10.1016/j.ceramint.2018.06.035
Google Scholar
[20]
X.F. Luo, L.C. Ren, Y.S. Xia, Y.K. Hu, W.Y. Gong, M.C. Cai, H.Q. Zhou, Microstructure, sinterability and properties of CaO-B2O3-SiO2 glass/Al2O3 composites for LTCC application, Ceram. Int. 44 (2018) 6791e6795.
DOI: 10.1016/j.ceramint.2017.02.096
Google Scholar
[21]
Q. Zhao, H.W. Zhang, F. Xu, Y.L. Liao, X.Y. Wang, H. Su, Y.X. Li, J. Li, Low-temperature sintering and magnetic properties of MABS glass doped Li0.35Zn0.3Mn0.05Ti0.1Fe2.05O4 ferrites, J. Alloys Compd.764 (2018) 834-839.
DOI: 10.1016/j.jallcom.2018.06.080
Google Scholar
[22]
J.L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s, Physica, 14 (1948) 207.
DOI: 10.1016/0031-8914(48)90038-x
Google Scholar
[23]
H. Su, H.W. Zhang, X.L. Tang, Effects of Bi2O3-WO3 additives on sintering behaviors and magnetic properties of NiCuZn ferrites, Mater. Sci. Eng. B 117 (2005) 231–234.
DOI: 10.1016/j.mseb.2004.11.028
Google Scholar
[24]
M. Drofenik, A. Znidarsic, D. Makovec, Influence of the Addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites, J. Am. Ceram. Soc. 81(1998) 2841–2848.
DOI: 10.1111/j.1151-2916.1998.tb02704.x
Google Scholar