Preparation and Electrochemical Performance of Mg2 + Doped Li4Ti5O12 Anode Materials for Lithium-Ion Batteries

Article Preview

Abstract:

Spinel Li4Ti5O12 (LTO) doped with Mg2+ was synthesized by solid-phase reaction method. The Mg2+ doping quantity was 3%, 6%, 9%, and 12%, respectively. The structure and electrochemical performance of the prepared LTO composites were investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and galvanostatic charge-discharge tests. It was found that the doped Mg ion did not change the structure of Li4Ti5O12, and it was evenly distributed around Li4Ti5O12. When Mg2+ doping quantity increased from 3% to 12%, the internal resistance and charge transfer resistance of the composite both decreased. The first discharge specific capacity of 6%-Mg2+ doped LTO composite was 168 mAh/g, which was close to the theoretical capacity of pure lithium titanate (175 mAh/g), and the capacity retention rate was 98% after 100 cycles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-243

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zhang, Y. Liu, T. Wang, Y. Yang, S.J. Shi, G. Yang, Li2ZrO3-coated Li4Ti5O12with nanoscale interface for high performance lithium-ion batteries. Appl. Surf.Sci. 368(2016) 56-62.

DOI: 10.1016/j.apsusc.2016.01.244

Google Scholar

[2] G.Y. Liu, H.Y. Wang, G.Q. Liu, Z.Z. Yang, B. Jin, Q.C. Jiang, Synthesis andelectrochemical performance of high-rate dual-phase Li4Ti5O12–TiO2nanocrystallinesfor Li-ion batteries, Electrochim. Acta. 87 (2013) 218-223.

DOI: 10.1016/j.electacta.2012.09.010

Google Scholar

[3] T.F. Yi, Y. Xie, Q.J. Wu, H.P. Liu, L.J. Jiang, M.F. Ye, R.S. Zhu, High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ionbatteries. J. Power Sources. 214 (2012) 220-226.

DOI: 10.1016/j.jpowsour.2012.04.101

Google Scholar

[4] W. Wang, B. Jiang, W.Y. Xiong, Z. Wang, S.Q. Jiao, A nanoparticle Mg-dopedLi4Ti5O12 for high rate lithium-ion batteries.Electrochim. Acta. 114 (2013) 198-204.

DOI: 10.1016/j.electacta.2013.10.035

Google Scholar

[5] Q.Y. Zhang, C.L. Zhang, B. Li, S.F. Kang, X. Li and Y.G. Wang, Preparationand electrochemical properties of Ca-doped Li4Ti5O12 as anode materials inlithium-ion battery.Electrochim. Acta 98 (2013) 146-152.

DOI: 10.1016/j.electacta.2013.03.006

Google Scholar

[6] W. Li, M.Z. Chen, J.J. Jiang, R. Wu, F. Wang, W.J. Liu, G.C. Peng, M.Z. Qu, Structural and electrochemical characteristic of SiO2 modified Li4Ti5O12 as anode for lithium-ion batteries. J. Alloys Comp. 637 (2015) 476-482.

DOI: 10.1016/j.jallcom.2015.03.049

Google Scholar

[7] X. Li, M. Qu, Z. Yu. Structural and electrochemical performances of Li4Ti5− xZrxO12, as anode material for lithium-ion batteries. J. Alloys compd. 487(2009) L12-L17.

DOI: 10.1016/j.jallcom.2009.07.176

Google Scholar

[8] I. Seo, C R. Lee, J K. Kim, Zr doping effect with low-cost solid-state reaction method to synthesize submicron Li4Ti5O12 anode material. J. Phys &Chemi Solids. 108 (2017) 25-29.

DOI: 10.1016/j.jpcs.2017.04.011

Google Scholar

[9] S Huang, Z Wen, J Zhang, et al. Li4Ti5O12/Ag composite as electrodematerials for lithium-ionbattery[J]. Solid State Ionics, 2006, 177:851–855.

DOI: 10.1016/j.ssi.2006.01.050

Google Scholar

[10] H L Zhao, Y Li, Z M Zhu. Structural and electrochemical characteristics of Li4-xAlxTi5O12 as anodematerial for lithium-ion batteries. Electrochim. Acta. 53(2008) 7079-7083.

DOI: 10.1016/j.electacta.2008.05.038

Google Scholar

[11] A. D Robertson,L Tervion, H Tukamoto. New inorganic spinel oxide for use as negative electrode materials in future lithium-ion batteries. J Power Sources. 125(2004) 242-245.

DOI: 10.1016/s0378-7753(98)00217-1

Google Scholar

[12] X. Xia, J. Zhan, Y. Zhong, X. Wang, J. Tu, &H. J. Fan, Single‐ crystalline, metallic TiC nanowires for highly robust and wide‐ temperature electrochemical energy storage. Small. 13 (2017) 6810-6829.

DOI: 10.1002/smll.201602742

Google Scholar

[13] M H Alfaruqi, S Islam, J Song. Carbon-coated rhombohedral Li2NaV2(PO4)3nanoflake cathode for Li-ion battery with excellent cycleability and rate capability.Chemi. Phys. Lett. 681(2017)44-49.

DOI: 10.1016/j.cplett.2017.05.047

Google Scholar

[14] H.Ge, T. Hao, H.Osgood. Advanced mesoporous spinel Li4Ti5O12/RGOcomposites with increased surface lithium storage capability for high-powerlithium-ion batteries. ACS Appl Mater Interfaces. 8 (2016) 9162-9169.

DOI: 10.1021/acsami.6b01644

Google Scholar

[15] X. Sun, P V. Radovanovic, B. Cui,Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J Chemi. 39 (2015) B641-B644.

Google Scholar

[16] K. Ding, J. Zhao, Y. Sun, et al. Using potassium ferricyanide as a dopant to prepare K and Fe co-doped Li4Ti5O12. Ceram. Inter. 42 (2016) 19187-19194.

DOI: 10.1016/j.ceramint.2016.09.082

Google Scholar

[17] Y. Ma, B. Ding, G. Ji, et al. Carbon-encapsulated F-doped Li4Ti5O12 as a high rateanode material for Li+ batteries. ACS Nano. 7(2013) 10870-10882.

Google Scholar

[18] S. Mao, X. Huang, J. Chang, et al. One-step, continuous synthesis of a sphericalLi4Ti5O12 |[sol]| graphene composite as an ultra-long cycle life lithium-ion batteryanode. Universidad De Las Palmas De Gran Canaria. 7 (2015) e224-e235.

DOI: 10.1038/am.2015.120

Google Scholar

[19] Y. Tang, Y. Zhang, X. Rui, et al. Conductive Inks Based on a Lithium TitanateNanotube Gel for High-Rate Lithium-Ion Batteries with CustomizedConfiguration. Adv. Mater. 28 (2016) 1567-1576.

DOI: 10.1002/adma.201505161

Google Scholar

[20] Z. Zhang, X. Deng, J. Sunarso, et al. Two‐ Step Fabrication of Li4Ti5O12‐CoatedCarbon Nanofibers as a Flexible Film Electrode for High‐ Power Lithium‐ IonBatteries. Chemelectrochem. 4 (2017) 2286-2292.

DOI: 10.1002/celc.201700351

Google Scholar

[21] C. Masarapu, V. Subramanian, H.W. Zhu, B.Q. Wei, Long-Cycle Electrochemical Behavior of Multiwall Carbon Nanotubes Synthesized on Stainless Steel in Li Ion Batteries, Adv.Func. Mater. 19 (2009) 1008-1014.

DOI: 10.1002/adfm.200801242

Google Scholar

[22] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries.Electrochim. Acta. 55 (2010) 6332-6341.

DOI: 10.1016/j.electacta.2010.05.072

Google Scholar

[23] J. Liu, X.F. Li, M. Cai, R.Y. Li, X.L. Sun, Ultrathin atomic layer deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as an anode material.Electrochim. Acta. 93(2013) 195-201.

DOI: 10.1016/j.electacta.2012.12.141

Google Scholar

[24] Y.B. He, F. Ning, B.H. Li, Q.S. Song, W. Lv, H.D. Du, D.Y. Zhai, F.Y. Su, Q.H. Yang, F.Y. Kang, Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. J. Power Sources. 202 (2012) 253-261.

DOI: 10.1016/j.jpowsour.2011.11.037

Google Scholar

[25] C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, M.M. Thackeray, Studies of Mg-Substituted Li4−xMgxTi5O12 Spinel Electrodes (0≤x≤1) for Lithium Batteries. J. Electrochem. Soc. 148 (2001) A102-104.

DOI: 10.1002/chin.200120010

Google Scholar