Study on the Possibility of One-Step Method Processing for Poly(p-Phenylene Terephthalamide) Fiber

Article Preview

Abstract:

In this paper, the low molecular weight poly (p-phenylene terephthalamide) (LMW-PPTA) solutions with different end group were obtained through changing molar ratio of monomers. Then, the high molecular weight PPTA (HMW-PPTA) polymer was synthesis by Secondary copolymerization. At that time, the PPTA fiber may be produced by means of reaction spinning in one step. Hence, the possibility of one-step method processing for PPTA fiber was studied by investigating the polymerization degree and gelling time of secondary copolymerization under different situations. The one-step method processing for PPTA fiber is not only free from the dependence on concentrated sulfuric acid, but also able to be controllable easily. Remarkably, the facile procedure, lower cost and better environmental protection are significant for the manufacture of PPTA fiber.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-199

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Zhang, Y.-x. Zhou, Y. Kong, Z.-m. Li, S.-R. Long, J. Yang, Semiaromatic polyamides containing ether and different numbers of methylene (2–10) units: synthesis and properties, Rsc Advances, 4 (2014) 63006-63015.

DOI: 10.1039/c4ra10074c

Google Scholar

[2] M. Peng, G. Xiao, X. Tang, Y. Zhou, Hydrogen-bonding assembly of rigid-rod poly (p-sulfophenylene terephthalamide) and flexible-chain poly (vinyl alcohol) for transparent, strong, and tough molecular composites, Macromolecules, 47 (2014) 8411-8419.

DOI: 10.1021/ma501590x

Google Scholar

[3] S.-J. Park, W. Choi, S.-E. Nam, S. Hong, J.S. Lee, J.-H. Lee, Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization, Journal of Membrane Science, 526 (2017) 52-59.

DOI: 10.1016/j.memsci.2016.12.027

Google Scholar

[4] S. Dewilde, J. Winters, W. Dehaen, K. Binnemans, Polymerization of PPTA in Ionic Liquid/Cosolvent Mixtures, Macromolecules, 50 (2017) 3089-3100.

DOI: 10.1021/acs.macromol.7b00579

Google Scholar

[5] S. Dewilde, T.V. Hoogerstraete, W. Dehaen, K. Binnemans, Synthesis of poly-p-phenylene terephthalamide (PPTA) in ionic liquids, Acs Sustainable Chemistry & Engineering, 6 (2017) 1362-1369.

DOI: 10.1021/acssuschemeng.7b03727

Google Scholar

[6] Q. Wang, Z. Chen, S. Deng, S. Song, C. Xiong, L. Dong, Fluxible poly (p-phenyleneterephthalamide)-based polymer with tunable condensed state structure and controllable rheology behaviors, Chemical Engineering Journal, 328 (2017) 343-352.

DOI: 10.1016/j.cej.2017.06.185

Google Scholar

[7] C. de Ruijter, W.F. Jager, J. Groenewold, S.J. Picken, Synthesis and characterization of rod− coil poly (amide-block-aramid) alternating block copolymers, Macromolecules, 39 (2006) 3824-3829.

DOI: 10.1021/ma052228i

Google Scholar

[8] T. Wright, C. Carr, C.A. Grant, V. Lilladhar, S. Russell, Strength of hydroentangled fabrics manufactured from photo-irradiated poly para-phenylene terephthalamide (PPTA) fibres, Polymer degradation and stability, 121 (2015) 193-199.

DOI: 10.1016/j.polymdegradstab.2015.08.017

Google Scholar

[9] N. Li, X.-K. Zhang, J.-R. Yu, Y. Wang, J. Zhu, Z.-M. Hu, Synthesis and Characterization of Easily Colored Meta-aramid Copolymer Containing Ether Bonds, Chinese Journal of Polymer Science, 37 (2019) 227-234.

DOI: 10.1007/s10118-019-2200-9

Google Scholar

[10] S. Qiang, N. Lei, Y. Zhang, X. Feng, Q. Chang, J. Meng, Poly(p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane, Journal of Materials Chemistry A, 5 (2017).

DOI: 10.1039/c7ta02552a

Google Scholar

[11] C. Fernández, M. Bermúdez, A. Alla, M. Mancera, M. García‐Martín, E. Benito, I. Roffe, J. Galbis, S. Muñoz‐Guerra, Crystallization studies on linear aliphatic polyamides derived from naturally occurring carbohydrates, Journal of applied polymer science, 116 (2010) 2515-2525.

DOI: 10.1002/app.31759

Google Scholar

[12] M. Takayanagi, T. Ogata, M. Morikawa, T. Kai, Polymer composites of rigid and flexible molecules: system of wholly aromatic and aliphatic polyamides, Journal of Macromolecular Science, Part B: Physics, 17 (1980) 591-615.

DOI: 10.1080/00222348008212828

Google Scholar

[13] W.Z. Wang, W.Z. Wang, Environment-friendly synthesis of long chain semiaromatic polyamides, Journal of Applied Polymer Science, 3 (2009) 2036-2042.

DOI: 10.1002/app.30774

Google Scholar

[14] J.P. Singhal, A.R. Ray, Synthesis of blood compatible polyamide block copolymers, Biomaterials, 23 (2002) 1139-1145.

DOI: 10.1016/s0142-9612(01)00228-9

Google Scholar

[15] S. Khademinejad, S. Mehdipour-Ataei, Aromatic Polyamide/Sepiolite Nanocomposite Materials: Synthesis, Structure, and Properties, Polymer-Plastics Technology and Engineering, 56 (2017) 1916-1922.

DOI: 10.1080/03602559.2017.1295315

Google Scholar

[16] LanQu, Sheng-RuLong, Mei-LinZhang, GangZhang, Xiao-JunWang, JieYang, Synthesis and Characterization of Poly(ethylene terephthalamide/hexamethylene terephthalamide), Journal of Macromolecular Science: Part A - Chemistry, 49 (2012) 67-72.

DOI: 10.1080/10601325.2012.630950

Google Scholar

[17] Z. Yang, W. Ying, G. Pan, H. Shi, Y. Hao, X. Jian, G. Min, W. Zhe, Y. Liu, Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling, Applied Surface Science, 419 (2017) 177-187.

DOI: 10.1016/j.apsusc.2017.05.047

Google Scholar

[18] W. Wang, Q. Xiang, G. Yan, Z. Fei, Z. Jie, C. Yan, Y. Zhu, X. Wan, Synthesis and Properties of Poly(p-phenylene terephthalamide) Bearing Both Polar and Unsaturated Substituents Introduced via Claisen Rearrangement Reaction, Journal of Polymer Science Part A Polymer Chemistry, 54 (2016) 2050-2059.

DOI: 10.1002/pola.28072

Google Scholar