Comparison of the Quality of Flaw Detection Materials Using Samples Developed for Liquid Penetrant Testing

Article Preview

Abstract:

The paper addresses the issues of subjective and instrumental quality assessment of flaw detection materials by Sherwin, Bycotest, Spotcheck, Chemetall and R-test penetrant materials using non-metallic test panels and software code.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-136

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Greissel, NDT shows strong growth, Quality 42 (2003) 4-5.

Google Scholar

[2] S. Sfarra, C. Ibarra-Castanedo, D. Ambrosini, D. Paoletti, A. Bendada, X. Maldague, Discovering the defects in paintings using non-destructive testing (NDT) techniques and passing through measurements of deformation. Journal of Nondestructive Evaluation 33 (2014) 358-383.

DOI: 10.1007/s10921-013-0223-7

Google Scholar

[3] H. J. Schlicht, Digital processing of color images, (1997).

Google Scholar

[4] Yu. A. Glazkov, Evaluation of material quality for liquid-penetrant inspection based on the visibility of the indicator patterns of flaws, Russian Journal of Nondestructive Testing 48 (2012), 208-217.

DOI: 10.1134/s1061830912040067

Google Scholar

[5] R. Heideklang, P. Shokouhi, Application of data fusion in nondestructive testing (NDT), Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey 9-12 July 2013, 835-841.

Google Scholar

[6] O. Sobyanin, S. Pronin, Development of a program in the mathcad environment for processing digital images of radiographs, Polzunovskiy almanac, 3 (2017) 74-76.

Google Scholar

[7] R.C. Gonzalez, R.E. Woods, S.L. Eddins, Digital Image Processing Using Matlab, Pearson Prentice Hall, Upper Saddle River, (2002).

Google Scholar

[8] R.C. Gonzalez, R.E. Woods, Digital Image Processing, 4th edited, (2018).

Google Scholar

[9] ISO 3452-3:2013 Non-destructive testing. Penetrant testing. Part 3: Reference test blocks, (2013).

DOI: 10.3403/01425267u

Google Scholar

[10] N. Kalinichenko, A. Kalinichenko, I. Lobanova, A. Zaitseva, E. Loboda, Determination of the Depth of Closed Blind Cracks in Non-metal Check Samples and Test Panels for Penetrant Testing, MATEC Web of Conferences 79, 01024 (2016) 1-5.

DOI: 10.1051/matecconf/20167901024

Google Scholar

[11] N.P. Kalinichenko, A.N. Kalinichenko, I.S. Lobanova, A.A. Zaitseva, Universal test panels from a nonmetal for capillary nondestructive testing, Russian Journal of Nondestructive Testing 10 (2015) 639-643.

DOI: 10.1134/s106183091510006x

Google Scholar

[12] M. Jiang, Ch. Deng, J. Shan, Yu. Wang, Yi. Jia, X. Sun, Hierarchical modal fusion FCN with attention model for RGB-D tracking, Information Fusion, (2019) 1-8.

DOI: 10.1016/j.inffus.2018.09.014

Google Scholar

[13] K.T. Ahmed, S. Ummesafia, A. Iqbalb, Content based image retrieval using image features, Information Fusion 51 (2019) 76-99.

DOI: 10.1016/j.inffus.2018.11.004

Google Scholar