[1]
A.A. Bespal'ko, R.M. Gol'd, L.V. Yavorovich, D.I. Datsko, Influence Exerted by Siltstone Lamination on the Electromagnetic Signal Parameters during Acoustic Excitation of Samples, Journal of Mining Science 38 (2002) 124–128.
Google Scholar
[2]
T.V. Fursa, D.D. Dann, K.Y. Osipov, Evaluation of freeze-thaw damage in concrete by the parameters of electric response under impact excitation, Construction and Building Materials 102 (2016) 182-189.
DOI: 10.1016/j.conbuildmat.2015.10.180
Google Scholar
[3]
T.V. Fursa, G.E. Utsyn, D.D. Dann, M.V. Petrov, Development prospects for nondestructive testing of heterogeneous nonmetallic materials by the parameters of electrical response to a shock action, Russian Journal of Nondestructive Testing 53(2) (2017) 104-110.
DOI: 10.1134/s1061830917020012
Google Scholar
[4]
A.A. Bespal'ko, L.V. Yavorovich, P.I. Fedotov, Diagnostics of destruction zone development in rock specimens during uniaxial compression based on the spectral characteristics of electromagnetic signals, Russian Journal of Nondestructive Testing 47(10) (2011) 41-49.
DOI: 10.1134/s1061830911100068
Google Scholar
[5]
V.P. Surzhikov and N.N. Khorsov. Analysis of Electromagnetic Emission from a Dielectric Sample under Stepwise Uniaxial Compressive Load, Technical Physics 60(1) (2015) 148-150.
DOI: 10.1134/s1063784215010259
Google Scholar
[6]
C.H. Schols, Microfraturing and the inelastic deformation of rock in compression, J. Geophys. Res. 73 (1968) 1417-1432.
Google Scholar
[7]
I. S. Tomashevskaya and Ya. I. Khamidullin, Precursors of destruction of rock specimens, News of the USSR Academy of Sciences, Earth Physics 5 (1972) 12-20.
Google Scholar
[8]
F.G. Koltsov, F.V. Ponomarev, B.G. Salov et.al., Investigation of precursory stage and fracture development in the rock samples be complex geophysical methods, Acta Geophys. Pol. 32 (1984) 283-299.
Google Scholar
[9]
N.G. Khatiashvili and M.E. Perel'man, Electromagnetic Emission Generation under Acoustic Wave Travel across Dielectrics and Some Rocks, Reports оf the Academy Sciences, 263(4) (1982) 71-74.
Google Scholar
[10]
H. Sakai, T. Nakayama and H. Doi, Electromagnetic Changes Detected at Explosion Seismic Experiment, J. Phys. Earth. 40 (1992) 447-458.
DOI: 10.4294/jpe1952.40.447
Google Scholar
[11]
I. Tomizawa, I. Yamada, Generation Mechanism of Electric Impulses Observed in Explosion Seismic Experiments, J. Geomagn. Geoelect. 40 (1995) 313-324.
DOI: 10.5636/jgg.47.313
Google Scholar
[12]
Yu.I. Bolotin, Electroacoustic-emission coefficient of normal-rupture cracks in rock failure, Journal of Mining Science 29(1) (1993) 36-38.
DOI: 10.1007/bf00734329
Google Scholar
[13]
C.S. Lee, Y.M. Rhyim, D. Know, R. Ono, Acoustic emission measurement of fatigue crack closure, Scripta metallurgica et materialia 32(5) (1995) 701-706.
DOI: 10.1016/0956-716x(95)91589-h
Google Scholar
[14]
I.S. Tomashevskaya, I.N. Khamidullin, Harbingers of destruction of rock samples, News of the USSR Academy of Sciences. Physics of the Earth 5 (1972) 12-20.
Google Scholar
[15]
R.M. Gold, G.P. Markov, P.G. Mogila, M.A. Samokhvalov, Pulsed electromagnetic radiation of minerals and rocks subjected to mechanical loading, News of the USSR Academy of Sciences. Physics of the Earth 7 (1975) 109-111.
Google Scholar
[16]
V.V. Ivanov, P.V. Egorov, P.A. Kolpakova, and A.G. Pimonov, Crack dynamics and electromagnetic radiation in loaded rocks, Journal of Mining Science 24(5) (1988) 406-412.
DOI: 10.1007/bf02498591
Google Scholar
[17]
V.F. Gordeev, V.V. Lasukov, Physics of electromagnetic emission method of materials quality control and its prospects, Izvestiya VUZov. Physics 44(7) (2001) 84-91.
Google Scholar
[18]
A.A. Bespalko, L.V. Yavorovich, P.I. Fedotov, Connection of parameters of electromagnetic signals with electrical characteristics of rocks at acoustic and quasi-static influences. Izvestiya TPU 308(7) (2005) 18-23.
Google Scholar
[19]
E.I. Parkhomenko, Electrical properties of rocks, Publishing house Nauka, Moscow, (1965).
Google Scholar
[20]
V.M. Dobrynin, B.J. Wendelstein, D.A. Kozhevnikov, Petrophysics (Rock Physics), 2nd edition, Publishing house Oil and Gas, Moscow, (2004).
Google Scholar
[21]
L.Y. Erofeev, Electrical properties of minerals and rocks, Publishing house TPU, Tomsk, (1994).
Google Scholar
[22]
L.D. Bersudsky, A.A. Logachev, O.Y. Solodukho, Course magnetic, Gostoptekhizdat, Moscow, (1940).
Google Scholar
[23]
V.P. Pronin, B.A. Mikhailov, Fundamentals of theory and application of electro capacitive systems, Рublishing house SSAU, Saratov, (2003).
Google Scholar
[24]
L.B. Loeb, Static Electrification, Springer, Berlin, (1958).
Google Scholar
[25]
R. D'Ambrosio, Z. Jackiewicz, Continuous two-step Runge-Kutta methods for ordinary differential equations, Numerical Algorithms 54(2) (2010) 169-193.
DOI: 10.1007/s11075-009-9329-5
Google Scholar
[26]
Yu.N. Gorelov, Numerical methods for solving ordinary differential equations (Runge-Kutta methods): textbook, Samara State University, Samara, (2006).
Google Scholar
[27]
M.Ya. Balbachan, Study of macroscopic metabolic processes in upon the occurrence and relaxation mechanoelectrets condition of rocks, News USSR Academy of sciences. Physics of the Earth 12 (1987) 56-71.
Google Scholar
[28]
E.Ph. Pevtsov, T.A. Demenkova, P.A. Luchnikov, V.V. Vetrova, Analysis of the thermal modes of Focal Plane Arrays, IOP Conference Series: Materials Science and Engineering 168, (2017) 012095,.
DOI: 10.1088/1757-899x/168/1/012095
Google Scholar
[29]
P.A. Luchnikov, O.A. Sarkisov, A.A. Rogachev, E.Ph. Pevtsov, T.A. Demenkova, Mechanisms of change of superficial properties of polymeric materials in discharge plasma, IOP Conference Series: Materials Science and Engineering 168 (2017) 012092,.
DOI: 10.1088/1757-899x/168/1/012092
Google Scholar