Polarization and Electromagnetic Emissions of Natural Crystalline Structures upon Acoustic Excitation

Article Preview

Abstract:

A surface charge density distribution on natural crystal samples is investigated in the paper. Here are revealed regularities of electromagnetic signal amplitude changes upon acoustic excitation of electrified calcite samples depending on the size of the crystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-166

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Bespal'ko, R.M. Gol'd, L.V. Yavorovich, D.I. Datsko, Influence Exerted by Siltstone Lamination on the Electromagnetic Signal Parameters during Acoustic Excitation of Samples, Journal of Mining Science 38 (2002) 124–128.

Google Scholar

[2] T.V. Fursa, D.D. Dann, K.Y. Osipov, Evaluation of freeze-thaw damage in concrete by the parameters of electric response under impact excitation, Construction and Building Materials 102 (2016) 182-189.

DOI: 10.1016/j.conbuildmat.2015.10.180

Google Scholar

[3] T.V. Fursa, G.E. Utsyn, D.D. Dann, M.V. Petrov, Development prospects for nondestructive testing of heterogeneous nonmetallic materials by the parameters of electrical response to a shock action, Russian Journal of Nondestructive Testing 53(2) (2017) 104-110.

DOI: 10.1134/s1061830917020012

Google Scholar

[4] A.A. Bespal'ko, L.V. Yavorovich, P.I. Fedotov, Diagnostics of destruction zone development in rock specimens during uniaxial compression based on the spectral characteristics of electromagnetic signals, Russian Journal of Nondestructive Testing 47(10) (2011) 41-49.

DOI: 10.1134/s1061830911100068

Google Scholar

[5] V.P. Surzhikov and N.N. Khorsov. Analysis of Electromagnetic Emission from a Dielectric Sample under Stepwise Uniaxial Compressive Load, Technical Physics 60(1) (2015) 148-150.

DOI: 10.1134/s1063784215010259

Google Scholar

[6] C.H. Schols, Microfraturing and the inelastic deformation of rock in compression, J. Geophys. Res. 73 (1968) 1417-1432.

Google Scholar

[7] I. S. Tomashevskaya and Ya. I. Khamidullin, Precursors of destruction of rock specimens, News of the USSR Academy of Sciences, Earth Physics 5 (1972) 12-20.

Google Scholar

[8] F.G. Koltsov, F.V. Ponomarev, B.G. Salov et.al., Investigation of precursory stage and fracture development in the rock samples be complex geophysical methods, Acta Geophys. Pol. 32 (1984) 283-299.

Google Scholar

[9] N.G. Khatiashvili and M.E. Perel'man, Electromagnetic Emission Generation under Acoustic Wave Travel across Dielectrics and Some Rocks, Reports оf the Academy Sciences, 263(4) (1982) 71-74.

Google Scholar

[10] H. Sakai, T. Nakayama and H. Doi, Electromagnetic Changes Detected at Explosion Seismic Experiment, J. Phys. Earth. 40 (1992) 447-458.

DOI: 10.4294/jpe1952.40.447

Google Scholar

[11] I. Tomizawa, I. Yamada, Generation Mechanism of Electric Impulses Observed in Explosion Seismic Experiments, J. Geomagn. Geoelect. 40 (1995) 313-324.

DOI: 10.5636/jgg.47.313

Google Scholar

[12] Yu.I. Bolotin, Electroacoustic-emission coefficient of normal-rupture cracks in rock failure, Journal of Mining Science 29(1) (1993) 36-38.

DOI: 10.1007/bf00734329

Google Scholar

[13] C.S. Lee, Y.M. Rhyim, D. Know, R. Ono, Acoustic emission measurement of fatigue crack closure, Scripta metallurgica et materialia 32(5) (1995) 701-706.

DOI: 10.1016/0956-716x(95)91589-h

Google Scholar

[14] I.S. Tomashevskaya, I.N. Khamidullin, Harbingers of destruction of rock samples, News of the USSR Academy of Sciences. Physics of the Earth 5 (1972) 12-20.

Google Scholar

[15] R.M. Gold, G.P. Markov, P.G. Mogila, M.A. Samokhvalov, Pulsed electromagnetic radiation of minerals and rocks subjected to mechanical loading, News of the USSR Academy of Sciences. Physics of the Earth 7 (1975) 109-111.

Google Scholar

[16] V.V. Ivanov, P.V. Egorov, P.A. Kolpakova, and A.G. Pimonov, Crack dynamics and electromagnetic radiation in loaded rocks, Journal of Mining Science 24(5) (1988) 406-412.

DOI: 10.1007/bf02498591

Google Scholar

[17] V.F. Gordeev, V.V. Lasukov, Physics of electromagnetic emission method of materials quality control and its prospects, Izvestiya VUZov. Physics 44(7) (2001) 84-91.

Google Scholar

[18] A.A. Bespalko, L.V. Yavorovich, P.I. Fedotov, Connection of parameters of electromagnetic signals with electrical characteristics of rocks at acoustic and quasi-static influences. Izvestiya TPU 308(7) (2005) 18-23.

Google Scholar

[19] E.I. Parkhomenko, Electrical properties of rocks, Publishing house Nauka, Moscow, (1965).

Google Scholar

[20] V.M. Dobrynin, B.J. Wendelstein, D.A. Kozhevnikov, Petrophysics (Rock Physics), 2nd edition, Publishing house Oil and Gas, Moscow, (2004).

Google Scholar

[21] L.Y. Erofeev, Electrical properties of minerals and rocks, Publishing house TPU, Tomsk, (1994).

Google Scholar

[22] L.D. Bersudsky, A.A. Logachev, O.Y. Solodukho, Course magnetic, Gostoptekhizdat, Moscow, (1940).

Google Scholar

[23] V.P. Pronin, B.A. Mikhailov, Fundamentals of theory and application of electro capacitive systems, Рublishing house SSAU, Saratov, (2003).

Google Scholar

[24] L.B. Loeb, Static Electrification, Springer, Berlin, (1958).

Google Scholar

[25] R. D'Ambrosio, Z. Jackiewicz, Continuous two-step Runge-Kutta methods for ordinary differential equations, Numerical Algorithms 54(2) (2010) 169-193.

DOI: 10.1007/s11075-009-9329-5

Google Scholar

[26] Yu.N. Gorelov, Numerical methods for solving ordinary differential equations (Runge-Kutta methods): textbook, Samara State University, Samara, (2006).

Google Scholar

[27] M.Ya. Balbachan, Study of macroscopic metabolic processes in upon the occurrence and relaxation mechanoelectrets condition of rocks, News USSR Academy of sciences. Physics of the Earth 12 (1987) 56-71.

Google Scholar

[28] E.Ph. Pevtsov, T.A. Demenkova, P.A. Luchnikov, V.V. Vetrova, Analysis of the thermal modes of Focal Plane Arrays, IOP Conference Series: Materials Science and Engineering 168, (2017) 012095,.

DOI: 10.1088/1757-899x/168/1/012095

Google Scholar

[29] P.A. Luchnikov, O.A. Sarkisov, A.A. Rogachev, E.Ph. Pevtsov, T.A. Demenkova, Mechanisms of change of superficial properties of polymeric materials in discharge plasma, IOP Conference Series: Materials Science and Engineering 168 (2017) 012092,.

DOI: 10.1088/1757-899x/168/1/012092

Google Scholar