Analysis of the Possibility of Determining the Internal Structure of Oil and Gas Pipes by CT Method

Article Preview

Abstract:

A mathematical model has been developed to simulate the initial projections for computed tomography of large-sized oil and gas pipes and to transform the projections into the mass thickness distributions. The simulated projections of steel pipes with a diameter from 530 mm to 1420 mm are given with variation of ADC capacity and the number of photons incident on the front surface of the multichannel bremsstrahlung detector. The necessity of correct selection of these parameters is proved. A possibility to estimate the density distribution over a pipe cross section based on the inverse Abel transform for the fan-beam of bremsstrahlung is illustrated. The issues related to the technical feasibility of the computed tomography method for inspecting of large-sized pipes and concerning the estimation of the total scan time and the choice of ADC capacity are considered. Recommendations on the adjustment of the analog and digital signals ranges are given. The obtained results make it possible to evaluate the feasibility of designing a computer tomography system for monitoring large-sized oil and gas pipes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-201

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.W. Schiffer, T. Kober, E. Panos, World energy council's global energy scenarios to 2060, Zeitschrift für Energiewirtschaft. 42(2) (2018) 91-102.

DOI: 10.1007/s12398-018-0225-3

Google Scholar

[2] T.S. Ahlbrandt. Future petroleum energy resources of the world. International Geology Review. 44(22) (2002) 1092-1104.

DOI: 10.2747/0020-6814.44.12.1092

Google Scholar

[3] I. Baran, I. Lyasota, K. Skrok. Acoustic emission testing of underground pipelines of crude oil of fuel storage depots. 32nd Euro. Conf. Acoustic Emission Testing, Praga. (2016) 15-26.

Google Scholar

[4] H.I. Shafeek, E.S. Gadelmawla, A.A. Abdel-Shafy, I.M. Elewa, Automatic inspection of gas pipeline welding defects using an expert vision system, NDT & E Int. 37(4) (2004) 301-307.

DOI: 10.1016/j.ndteint.2003.10.004

Google Scholar

[5] A.A. Carvalho, J.M.A. Rebello, M.P.V. Souza, L.V.S. Sagrilo, S.D. Soares. Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry. Int. J. Pressure Vessels & Piping 85(11) (2008) 745-751.

DOI: 10.1016/j.ijpvp.2008.05.001

Google Scholar

[6] U. Ewert, U. Zscherpel, K. Bavendiek. Replacement of film ra-diography by digital techniques and enhancement of image quality, Annual conf. Indian NDT society, (2005).

Google Scholar

[7] P. Rostron, Critical review of pipeline scale measurement technologies, Indian Journal of Science and Technology 11 (2018). 1-18.

Google Scholar

[8] N. Boaretto, T.M. Centeno, Automated detection of welding defects in pipelines from radiographic images DWDI, NDT & E Int. 86 (2017) 7-13.

DOI: 10.1016/j.ndteint.2016.11.003

Google Scholar

[9] R. Konar, M. Mician, M. Bucha, P. Vrzgula, I. Hlavaty, Digital radiography corrosion mapping on gas pipelines, Communications-Scientific letters of the University of Zilina. 19(2A) (2017) 101-105.

DOI: 10.26552/com.c.2017.2a.101-105

Google Scholar

[10] C. Cheng, W.B. Jia, D.Q. Hei, S.Q. Geng, H.T. Wang, L.T. Xing, Determination of thickness of wax deposition in oil pipelines using gamma-ray transmission method, Nuclear Science and Techniques 29(8) (2018) 109.

DOI: 10.1007/s41365-018-0447-4

Google Scholar

[11] E. Moreira, J.B. Rabello, M. Pereira, R. Lopes, U. Zscherpel, Digital radiography using digital detector arrays fulfills critical applications for offshore pipelines, EURASIP J. Advances in Signal Processing. 2010(1) (2010) 894643.

DOI: 10.1155/2010/894643

Google Scholar

[12] R. Halmshaw. Industrial Radiography. Agfa-Gevaert N.V., 2nd Ed., Mortsel, Belgium, (1995).

Google Scholar

[13] ISO 17636-1. Non-destructive testing of welds. Radiographic testing. X- and gamma-ray techniques with film.

DOI: 10.3403/30195036u

Google Scholar

[14] ISO 17636-2. Non-destructive testing of welds. Radiographic testing. X- and gamma-ray techniques with digital detectors.

DOI: 10.3403/30195040

Google Scholar

[15] N.A.B. Riis, J. Frøsig, Y. Dong, P.C. Hansen, Limited-data x-ray CT for underwater pipeline inspection, Inverse Problems 34(3) (2018) 034002.

DOI: 10.1088/1361-6420/aaa49c

Google Scholar

[16] J. Kim, S.H. Jung, J. Moon, J.G. Park, J. Jin, G.Cho, Development of transportable gamma-ray tomographic system for industrial application, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 693 (2012) 203-208.

DOI: 10.1016/j.nima.2012.07.046

Google Scholar

[17] N.H. Quang, P. Van Dao, B.T. Duy, N. Van Chuan, A third generation gamma-ray industrial computed tomography systems for pipeline inspection, Journal Technology 77(17) (2015) 49-53.

DOI: 10.11113/jt.v77.6435

Google Scholar

[18] Information on: http://www.auremo.biz/gosts/gost-31447-2012.html.

Google Scholar

[19] M.I. Haith, U. Ewert, S. Hohendorf, C. Bellon, A. Deresch, P. Huthwaite, U. Zscherpel. Radiographic modelling for NDE of subsea pipelines. NDT&E Int. 86 (2017) 113-122.

DOI: 10.1016/j.ndteint.2016.11.006

Google Scholar

[20] J. Hsieh. Computed tomography: principles, design, artifacts, and recent advances. Bellingham, WA: SPIE, (2009).

Google Scholar

[21] F.E. Boas, D. Fleischmann. CT artifacts: causes and reduction techniques. Imaging in Medicine. 4(2) (2012) 229-240.

DOI: 10.2217/iim.12.13

Google Scholar

[22] F. Xu, L. Helfen, T. Baumbach, H. Suhonen. Comparison of image quality in computed laminography and tomography. Optics Express 20(2) (2012) 794-806.

DOI: 10.1364/oe.20.000794

Google Scholar

[23] L.W. Goldman. Principles of CT: radiation dose and image quality. Journal of nuclear medicine technology 35(4) (2007) 213-225.

DOI: 10.2967/jnmt.106.037846

Google Scholar

[24] R.A. Brooks, G. Di Chiro. Theory of image reconstruction in computed tomography. Radiology. 117(3) (1975) 561-572.

DOI: 10.1148/117.3.561

Google Scholar

[25] S. Coric, M. Leeser, E. Miller, M. Trepanier. Parallel-beam back projection: an FPGA implementation optimized for medical imaging. Proceedings of the 2002 ACM/SIGDA 10th international symposium on Field-programmable gate arrays. ACM (2002) 217-226.

DOI: 10.1145/503048.503080

Google Scholar

[26] J.D. Miller, C.L. Lin, A.B. Cortes. A review of X-ray computed tomography and its applications in mineral processing. Mineral Processing and Extractive Metallurgy Review 7(1) (1990) 1-18.

DOI: 10.1080/08827509008952663

Google Scholar

[27] S.P. Osipov, S.V. Chakhlov, D.U. Kairalapov, E.V. Sirot'yan. Numerical Simulation of X-ray Images is the Basis for the Correct Design of Digital Radiography Systems for Large-sized Objects. Rus. J. NDT 55(2) (2019) 136-149.

DOI: 10.1134/s1061830919020050

Google Scholar

[28] S.P. Osipov, S.V. Chakhlov, O.S. Osipov, S. Li, X. Sun, J. Zheng, X. Hu, G. Zhang. Physical and technical restrictions of materials recognition by the dual high energy X-ray imaging. Int. J. Appl. Eng. Research 12(23) (2017) 13127-13136.

Google Scholar

[29] C.M. Ziegler, M. Franetzki, T. Denig, J. Mühling, S. Hassfeld. Digital tomosynthesis - experiences with a new imaging device for the dental field. Clinical oral investigations 7(1) (2003) 41-45.

DOI: 10.1007/s00784-003-0195-6

Google Scholar

[30] V. Van der Linden, E. Van de Casteele, M.S. Thomas, A. De Vos, E. Janssen, K. Janssens. Analysis of micro computed tomography images; a look inside historic enameled metal objects. Applied Physics A 98(2) (2010) 385-392.

DOI: 10.1007/s00339-009-5394-9

Google Scholar

[31] L. Gjesteby, B. De Man, Y. Jin, H. Paganetti, J. Verburg, D. Giantsoudi, G. Wang. Metal artifact reduction in CT: where are we after four decades? IEEE Access 4 (2016) 5826-5849.

DOI: 10.1109/access.2016.2608621

Google Scholar

[32] J.F. Barrett, N. Keat. Artifacts in CT: Recognition and Avoidance. RadioGraphics 24(6) (2004) 1679-1691.

DOI: 10.1148/rg.246045065

Google Scholar

[33] G.T. Herman. Fundamentals of Computerized Tomography. Springer, London, (2009).

Google Scholar

[34] O.I. Nedavnii, S.P. Osipov, O.A. Sidulenko. Choice of the compensating filter profile in images restoration for objects with annular structures in X-ray computational tomography. Rus. J NDT 38(4) (2002) 261-265.

Google Scholar

[35] N. Stribeck, U. Nöchel, A. Almendárez Camarillo. Scanning microbeam X‐ray scattering of fibers analyzed by one‐dimensional tomography. Macromolecular Chemistry and Physics 209(19) (2008) 1976-1982.

DOI: 10.1002/macp.200800242

Google Scholar

[36] U.P. Veera Gamma ray tomography design for the measurement of hold-up profiles in two-phase bubble columns. Chem. Eng. J. 81(1) (2001) 251-260.

DOI: 10.1016/s1385-8947(00)00202-3

Google Scholar

[37] S. Osipov, S. Chakhlov, A. Batranin, O. Osipov, J. Kytmanov. Theoretical study of a simplified implementation model of a dual-energy technique for computed tomography. NDT&E Int. 98 (2018) 63-69.

DOI: 10.1016/j.ndteint.2018.04.010

Google Scholar

[38] D. Ito, K. Ito, Y. Saito, M. Aoyagi, K. Matsuba, K. Kamiyama. Estimation of porosity and void fraction profiles in a packed bed of spheres using X-ray radiography. Nucl. Eng.&Design 334 (2018) 90-95.

DOI: 10.1016/j.nucengdes.2018.05.003

Google Scholar

[39] T. Fukuda, Y. Awatsuji, P. Xia, T. Kakue, K. Nishio, O. Matoba. Review of three-dimensional imaging of dynamic objects by parallel phase-shifting digital holography. Opt. Eng. 57(6) (2018) 061613.

DOI: 10.1117/1.oe.57.6.061613

Google Scholar

[40] G.H. Zschornack. Handbook of X-ray data. Springer Science & Business Media, (2007).

Google Scholar

[41] S.V. Chakhlov, S.V. Kasyanov, V.A. Kasyanov, S.P. Osipov, M.M. Stein, A.M. Stein, S. Xiaoming. Betatron application in mobile and relocatable inspection systems for freight transport control. J. Physics: Conference Series. IOP Publishing 671(1) (2016) 012024.

DOI: 10.1088/1742-6596/671/1/012024

Google Scholar

[42] J. Cao, C.Y. Jiang, Y.F. Zhao, Q.W. Yang, Z.J. Yin. A novel X-ray tube spectra reconstruction method based on transmission measurements. Nucl. Sc.&Tech. 27(2) (2016) 1-45.

DOI: 10.1007/s41365-016-0041-6

Google Scholar

[43] M.R. Mahfouz, M.J. Kuhn, G. To, A.E. Fathy. Integration of UWB and wireless pressure mapping in surgical navigation. IEEE Trans. on Microwave Theory & Tech. 57(10) (2009) 2550-2564.

DOI: 10.1109/tmtt.2009.2029721

Google Scholar

[44] N. Dipova. Automated strain measurements in uniaxial testing via computer vision. Geotechnical Testing Journal 42(4) (2018).

DOI: 10.1520/gtj20170349

Google Scholar

[45] M. Sommer, A. Jahn, J. Henniger. A new personal dosimetry system for HP (10) and HP (0.07) photon dose based on OSL-dosimetry of beryllium oxide. Rad. Meas. 46(12) (2011) 1818-1821.

DOI: 10.1016/j.radmeas.2011.07.002

Google Scholar

[46] Information on: https://www.varian.com/sites/default/files/resource_attachments/SIPspecMI. pdf.

Google Scholar

[47] Information on: http://www.niiefa.spb.su/site/left/accelerat/electrons/defectoscop/?lang=ru.

Google Scholar

[48] S. Hahn, R. Elphic, T. Murphy, M. Hodgson, R. Byrd, J. Longmire, M. Meier. A validation payload for space and atmospheric nuclear event detection. 2002 IEEE Nuclear Science Symposium 1 (2002) 71-77.

DOI: 10.1109/nssmic.2002.1239271

Google Scholar

[49] A.R. Zacher. A wide-range logarithmic charge digitizer. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40(5) (1993) 307-316.

DOI: 10.1109/81.232575

Google Scholar

[50] R. Howes. Circuit to control the effect of dielectric absorption in dynamic voltage scaling low dropout regulator. Patent 9122289.

Google Scholar