[1]
H.W. Schiffer, T. Kober, E. Panos, World energy council's global energy scenarios to 2060, Zeitschrift für Energiewirtschaft. 42(2) (2018) 91-102.
DOI: 10.1007/s12398-018-0225-3
Google Scholar
[2]
T.S. Ahlbrandt. Future petroleum energy resources of the world. International Geology Review. 44(22) (2002) 1092-1104.
DOI: 10.2747/0020-6814.44.12.1092
Google Scholar
[3]
I. Baran, I. Lyasota, K. Skrok. Acoustic emission testing of underground pipelines of crude oil of fuel storage depots. 32nd Euro. Conf. Acoustic Emission Testing, Praga. (2016) 15-26.
Google Scholar
[4]
H.I. Shafeek, E.S. Gadelmawla, A.A. Abdel-Shafy, I.M. Elewa, Automatic inspection of gas pipeline welding defects using an expert vision system, NDT & E Int. 37(4) (2004) 301-307.
DOI: 10.1016/j.ndteint.2003.10.004
Google Scholar
[5]
A.A. Carvalho, J.M.A. Rebello, M.P.V. Souza, L.V.S. Sagrilo, S.D. Soares. Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry. Int. J. Pressure Vessels & Piping 85(11) (2008) 745-751.
DOI: 10.1016/j.ijpvp.2008.05.001
Google Scholar
[6]
U. Ewert, U. Zscherpel, K. Bavendiek. Replacement of film ra-diography by digital techniques and enhancement of image quality, Annual conf. Indian NDT society, (2005).
Google Scholar
[7]
P. Rostron, Critical review of pipeline scale measurement technologies, Indian Journal of Science and Technology 11 (2018). 1-18.
Google Scholar
[8]
N. Boaretto, T.M. Centeno, Automated detection of welding defects in pipelines from radiographic images DWDI, NDT & E Int. 86 (2017) 7-13.
DOI: 10.1016/j.ndteint.2016.11.003
Google Scholar
[9]
R. Konar, M. Mician, M. Bucha, P. Vrzgula, I. Hlavaty, Digital radiography corrosion mapping on gas pipelines, Communications-Scientific letters of the University of Zilina. 19(2A) (2017) 101-105.
DOI: 10.26552/com.c.2017.2a.101-105
Google Scholar
[10]
C. Cheng, W.B. Jia, D.Q. Hei, S.Q. Geng, H.T. Wang, L.T. Xing, Determination of thickness of wax deposition in oil pipelines using gamma-ray transmission method, Nuclear Science and Techniques 29(8) (2018) 109.
DOI: 10.1007/s41365-018-0447-4
Google Scholar
[11]
E. Moreira, J.B. Rabello, M. Pereira, R. Lopes, U. Zscherpel, Digital radiography using digital detector arrays fulfills critical applications for offshore pipelines, EURASIP J. Advances in Signal Processing. 2010(1) (2010) 894643.
DOI: 10.1155/2010/894643
Google Scholar
[12]
R. Halmshaw. Industrial Radiography. Agfa-Gevaert N.V., 2nd Ed., Mortsel, Belgium, (1995).
Google Scholar
[13]
ISO 17636-1. Non-destructive testing of welds. Radiographic testing. X- and gamma-ray techniques with film.
DOI: 10.3403/30195036u
Google Scholar
[14]
ISO 17636-2. Non-destructive testing of welds. Radiographic testing. X- and gamma-ray techniques with digital detectors.
DOI: 10.3403/30195040
Google Scholar
[15]
N.A.B. Riis, J. Frøsig, Y. Dong, P.C. Hansen, Limited-data x-ray CT for underwater pipeline inspection, Inverse Problems 34(3) (2018) 034002.
DOI: 10.1088/1361-6420/aaa49c
Google Scholar
[16]
J. Kim, S.H. Jung, J. Moon, J.G. Park, J. Jin, G.Cho, Development of transportable gamma-ray tomographic system for industrial application, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 693 (2012) 203-208.
DOI: 10.1016/j.nima.2012.07.046
Google Scholar
[17]
N.H. Quang, P. Van Dao, B.T. Duy, N. Van Chuan, A third generation gamma-ray industrial computed tomography systems for pipeline inspection, Journal Technology 77(17) (2015) 49-53.
DOI: 10.11113/jt.v77.6435
Google Scholar
[18]
Information on: http://www.auremo.biz/gosts/gost-31447-2012.html.
Google Scholar
[19]
M.I. Haith, U. Ewert, S. Hohendorf, C. Bellon, A. Deresch, P. Huthwaite, U. Zscherpel. Radiographic modelling for NDE of subsea pipelines. NDT&E Int. 86 (2017) 113-122.
DOI: 10.1016/j.ndteint.2016.11.006
Google Scholar
[20]
J. Hsieh. Computed tomography: principles, design, artifacts, and recent advances. Bellingham, WA: SPIE, (2009).
Google Scholar
[21]
F.E. Boas, D. Fleischmann. CT artifacts: causes and reduction techniques. Imaging in Medicine. 4(2) (2012) 229-240.
DOI: 10.2217/iim.12.13
Google Scholar
[22]
F. Xu, L. Helfen, T. Baumbach, H. Suhonen. Comparison of image quality in computed laminography and tomography. Optics Express 20(2) (2012) 794-806.
DOI: 10.1364/oe.20.000794
Google Scholar
[23]
L.W. Goldman. Principles of CT: radiation dose and image quality. Journal of nuclear medicine technology 35(4) (2007) 213-225.
DOI: 10.2967/jnmt.106.037846
Google Scholar
[24]
R.A. Brooks, G. Di Chiro. Theory of image reconstruction in computed tomography. Radiology. 117(3) (1975) 561-572.
DOI: 10.1148/117.3.561
Google Scholar
[25]
S. Coric, M. Leeser, E. Miller, M. Trepanier. Parallel-beam back projection: an FPGA implementation optimized for medical imaging. Proceedings of the 2002 ACM/SIGDA 10th international symposium on Field-programmable gate arrays. ACM (2002) 217-226.
DOI: 10.1145/503048.503080
Google Scholar
[26]
J.D. Miller, C.L. Lin, A.B. Cortes. A review of X-ray computed tomography and its applications in mineral processing. Mineral Processing and Extractive Metallurgy Review 7(1) (1990) 1-18.
DOI: 10.1080/08827509008952663
Google Scholar
[27]
S.P. Osipov, S.V. Chakhlov, D.U. Kairalapov, E.V. Sirot'yan. Numerical Simulation of X-ray Images is the Basis for the Correct Design of Digital Radiography Systems for Large-sized Objects. Rus. J. NDT 55(2) (2019) 136-149.
DOI: 10.1134/s1061830919020050
Google Scholar
[28]
S.P. Osipov, S.V. Chakhlov, O.S. Osipov, S. Li, X. Sun, J. Zheng, X. Hu, G. Zhang. Physical and technical restrictions of materials recognition by the dual high energy X-ray imaging. Int. J. Appl. Eng. Research 12(23) (2017) 13127-13136.
Google Scholar
[29]
C.M. Ziegler, M. Franetzki, T. Denig, J. Mühling, S. Hassfeld. Digital tomosynthesis - experiences with a new imaging device for the dental field. Clinical oral investigations 7(1) (2003) 41-45.
DOI: 10.1007/s00784-003-0195-6
Google Scholar
[30]
V. Van der Linden, E. Van de Casteele, M.S. Thomas, A. De Vos, E. Janssen, K. Janssens. Analysis of micro computed tomography images; a look inside historic enameled metal objects. Applied Physics A 98(2) (2010) 385-392.
DOI: 10.1007/s00339-009-5394-9
Google Scholar
[31]
L. Gjesteby, B. De Man, Y. Jin, H. Paganetti, J. Verburg, D. Giantsoudi, G. Wang. Metal artifact reduction in CT: where are we after four decades? IEEE Access 4 (2016) 5826-5849.
DOI: 10.1109/access.2016.2608621
Google Scholar
[32]
J.F. Barrett, N. Keat. Artifacts in CT: Recognition and Avoidance. RadioGraphics 24(6) (2004) 1679-1691.
DOI: 10.1148/rg.246045065
Google Scholar
[33]
G.T. Herman. Fundamentals of Computerized Tomography. Springer, London, (2009).
Google Scholar
[34]
O.I. Nedavnii, S.P. Osipov, O.A. Sidulenko. Choice of the compensating filter profile in images restoration for objects with annular structures in X-ray computational tomography. Rus. J NDT 38(4) (2002) 261-265.
Google Scholar
[35]
N. Stribeck, U. Nöchel, A. Almendárez Camarillo. Scanning microbeam X‐ray scattering of fibers analyzed by one‐dimensional tomography. Macromolecular Chemistry and Physics 209(19) (2008) 1976-1982.
DOI: 10.1002/macp.200800242
Google Scholar
[36]
U.P. Veera Gamma ray tomography design for the measurement of hold-up profiles in two-phase bubble columns. Chem. Eng. J. 81(1) (2001) 251-260.
DOI: 10.1016/s1385-8947(00)00202-3
Google Scholar
[37]
S. Osipov, S. Chakhlov, A. Batranin, O. Osipov, J. Kytmanov. Theoretical study of a simplified implementation model of a dual-energy technique for computed tomography. NDT&E Int. 98 (2018) 63-69.
DOI: 10.1016/j.ndteint.2018.04.010
Google Scholar
[38]
D. Ito, K. Ito, Y. Saito, M. Aoyagi, K. Matsuba, K. Kamiyama. Estimation of porosity and void fraction profiles in a packed bed of spheres using X-ray radiography. Nucl. Eng.&Design 334 (2018) 90-95.
DOI: 10.1016/j.nucengdes.2018.05.003
Google Scholar
[39]
T. Fukuda, Y. Awatsuji, P. Xia, T. Kakue, K. Nishio, O. Matoba. Review of three-dimensional imaging of dynamic objects by parallel phase-shifting digital holography. Opt. Eng. 57(6) (2018) 061613.
DOI: 10.1117/1.oe.57.6.061613
Google Scholar
[40]
G.H. Zschornack. Handbook of X-ray data. Springer Science & Business Media, (2007).
Google Scholar
[41]
S.V. Chakhlov, S.V. Kasyanov, V.A. Kasyanov, S.P. Osipov, M.M. Stein, A.M. Stein, S. Xiaoming. Betatron application in mobile and relocatable inspection systems for freight transport control. J. Physics: Conference Series. IOP Publishing 671(1) (2016) 012024.
DOI: 10.1088/1742-6596/671/1/012024
Google Scholar
[42]
J. Cao, C.Y. Jiang, Y.F. Zhao, Q.W. Yang, Z.J. Yin. A novel X-ray tube spectra reconstruction method based on transmission measurements. Nucl. Sc.&Tech. 27(2) (2016) 1-45.
DOI: 10.1007/s41365-016-0041-6
Google Scholar
[43]
M.R. Mahfouz, M.J. Kuhn, G. To, A.E. Fathy. Integration of UWB and wireless pressure mapping in surgical navigation. IEEE Trans. on Microwave Theory & Tech. 57(10) (2009) 2550-2564.
DOI: 10.1109/tmtt.2009.2029721
Google Scholar
[44]
N. Dipova. Automated strain measurements in uniaxial testing via computer vision. Geotechnical Testing Journal 42(4) (2018).
DOI: 10.1520/gtj20170349
Google Scholar
[45]
M. Sommer, A. Jahn, J. Henniger. A new personal dosimetry system for HP (10) and HP (0.07) photon dose based on OSL-dosimetry of beryllium oxide. Rad. Meas. 46(12) (2011) 1818-1821.
DOI: 10.1016/j.radmeas.2011.07.002
Google Scholar
[46]
Information on: https://www.varian.com/sites/default/files/resource_attachments/SIPspecMI. pdf.
Google Scholar
[47]
Information on: http://www.niiefa.spb.su/site/left/accelerat/electrons/defectoscop/?lang=ru.
Google Scholar
[48]
S. Hahn, R. Elphic, T. Murphy, M. Hodgson, R. Byrd, J. Longmire, M. Meier. A validation payload for space and atmospheric nuclear event detection. 2002 IEEE Nuclear Science Symposium 1 (2002) 71-77.
DOI: 10.1109/nssmic.2002.1239271
Google Scholar
[49]
A.R. Zacher. A wide-range logarithmic charge digitizer. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40(5) (1993) 307-316.
DOI: 10.1109/81.232575
Google Scholar
[50]
R. Howes. Circuit to control the effect of dielectric absorption in dynamic voltage scaling low dropout regulator. Patent 9122289.
Google Scholar