[1]
EC Commission Regulation No 629/2008 of 2 July 2008. Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs, Official Journal of the European Union L, 173, 6–9.
Google Scholar
[2]
A.T. Reis, A.C. Duarte, B. Henriques, C. Coelho, C.B. Lopes, C.L. Mieiro, D.S. Tavares, I. Ahmad, J.P. Coelho, L.S. Rocha, N. Cruz, R.J.R. Monteiro, R. Rocha, S. Rodrigues, E. Pereira, An international proficiency test as a tool to evaluate mercury determination in environmental matrices. Trends Anal. Chem. 64 (2015) 136–148.
DOI: 10.1016/j.trac.2014.08.015
Google Scholar
[3]
A. Renzoni, F. Zino, E. Franchi, Mercury levels along the food chain and risk for exposed populations. Environ. Res. 77 (1998) 68–72.
DOI: 10.1006/enrs.1998.3832
Google Scholar
[4]
D.W. Boening, Ecological effects, transport, and fate of mercury, a general review. Chemospher. 40 (2000) 1335–1351.
DOI: 10.1016/s0045-6535(99)00283-0
Google Scholar
[5]
EPA 2008. Mercury update, impact on fish advisories EPA Fact Sheet EPA-823-F-0-011.
Google Scholar
[6]
H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish. Science. 301, (2003) 1203.
Google Scholar
[7]
C.K. Prudenté, R.S. Sirios, S. Cote, Synthesis and application of organomercury haptens for enzyme-linked immunoassay of inorganic and organic mercury. Anal. Biochem. 404 (2010) 179–185.
DOI: 10.1016/j.ab.2010.05.021
Google Scholar
[8]
A. Giacomino, A.R. Redda, S. Squadrone, M. Rizzi, M.C. Abete, C. La Gioia, R. Toniolo, O. Abollino, M. Malandrino, Anodic stripping voltammetry with gold electrodes as an alternative method for the routine determination of mercury in fish comparison with spectroscopic approaches. Food Chem. 221 (2017) 737–745.
DOI: 10.1016/j.foodchem.2016.11.111
Google Scholar
[9]
O. Abollino, A. Giacomino, M. Malandrino, S. Marro, E. Mentasti, Voltammetric determination of methylmercury and inorganic mercury with an home-made gold nanoparticle electrode. J. Appl. Electrochem. 39 (2009) 2209–2216.
DOI: 10.1007/s10800-009-9830-5
Google Scholar
[10]
C.-H. Yao, S.-J. Jiang, A.C. Sahayam, Y.-L. Huang, Speciation of mercury in fish oils using liquid chromatography inductively coupled plasma mass spectrometry. Microchem. J. 133 (2017) 556–560.
DOI: 10.1016/j.microc.2017.04.034
Google Scholar
[11]
Y.Q. Zhao, J.P. Zheng, L. Fang, Q. Lin, Y.N. Wu, Z.M. Xue, F.F. Fu, Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis–inductively coupled plasma mass spectrometry Talanta 89 (2012) 280–285.
DOI: 10.1016/j.talanta.2011.12.029
Google Scholar
[12]
L.B. Escudero, R.A. Olsina, R.G. Wuilloud, Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry. Talanta. 116 (2013)133–140.
DOI: 10.1016/j.talanta.2013.05.001
Google Scholar
[13]
E. Kenduzler, M. Ates, Z. Arslan, M. McHenry, P.B. Tchounwou, Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Talanta. 93 (2012) 404–410.
DOI: 10.1016/j.talanta.2012.02.063
Google Scholar
[14]
A. Afkhami, T. Madrakian, H. Ghaedi, M. Rezaeivala, Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples. Anal. Chim. Acta. 771 (2013) 21–30.
DOI: 10.1016/j.aca.2013.02.031
Google Scholar
[15]
T.-T. Wang, Y.-H. Chen, J.-F. Ma, M.-J. Hu, Y. Li, J.-H. Fang, H.-Q. Gao, A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives. Anal. Bioanal. Chem. 406 (2014) 4955–4963.
DOI: 10.1007/s00216-014-7923-4
Google Scholar
[16]
L. Ling, Y. Zhao, J. Du, D. Xiao, An optical sensor for mercuric ion based on immobilization of Rhodamine B derivative in PVC membrane. Talanta. 91 (2012) 65–71.
DOI: 10.1016/j.talanta.2012.01.013
Google Scholar
[17]
S. Bothra, Y. Upadhyay, R. Kumar, S.K.A. Kumar, S.K. Sahoo, Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions. Biosens. Bioelectron. 90 (2017) 329–335.
DOI: 10.1016/j.bios.2016.11.066
Google Scholar
[18]
L.F. Capitán-Vallvey, C.C. Raya, E.L. López, M.D.F. Ramos, Irreversible optical test strip for mercury determination based on neutral ionophore. Anal. Chim. Acta. 524 (2004) 365–372.
DOI: 10.1016/j.aca.2004.03.082
Google Scholar
[19]
E.M. Nolan, S.J. Lippard, Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 108 (2008) 3443–3480.
DOI: 10.1021/cr068000q
Google Scholar
[20]
Z.-X. Hana, B.-S. Zhu, T.-L. Wu, Q.-Q. Yang, Y.-L. Xue, Z. Zhang, X.-Y. Wu, A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range. Chin. Chem. Lett. 25 (2014) 73–76.
DOI: 10.1016/j.cclet.2013.10.027
Google Scholar
[21]
S. Yoon, A.E. Albers, A.P. Wong, C.J. Chang Screening mercury levels in fish with a selective fluorescent chemosensor. J. Am. Chem. Soc. 127 (2005)16030–16031.
DOI: 10.1021/ja0557987
Google Scholar
[22]
N. Altunay, Utility of ultrasound assisted-cloud point extraction and spectophotometry as a preconcentration and determination tool for the sensitive quantification of mercury species in fish samples. Spectrochim. Acta. A. 189 (2018) 167–175.
DOI: 10.1016/j.saa.2017.08.033
Google Scholar
[23]
V.A. Lemos, L.O. dos Santos, A new method for preconcentration and determination of mercury in fish, shellfish and saliva by cold vapour atomic absorption spectrometry. Food Chem. 149 (2014) 203–207.
DOI: 10.1016/j.foodchem.2013.10.109
Google Scholar
[24]
K. Leopold, M. Foulkes, P.J. Worsfold, Preconcentration techniques for the determination of mercury species in natural waters. Trends Anal. Chem. 28 (2009) 426–435.
DOI: 10.1016/j.trac.2009.02.004
Google Scholar
[25]
S. Zarco-Fernández, M.J. Mancheño, R. Muñoz-Olivas, C. Cámara A new specific polymeric material for mercury speciation, Application to environmental and food samples. Anal. Chim. Acta. 897 (2015) 109–115.
DOI: 10.1016/j.aca.2015.09.016
Google Scholar
[26]
E. Najafi, F. Aboufazeli, H.R. Zhad, O. Sadeghi, V. Amani, A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury(II) ions in fish samples. Food Chem, 141 (2013) 4040–4045.
DOI: 10.1016/j.foodchem.2013.06.118
Google Scholar
[27]
M. Tuzen, I. Karaman, D. Citak, M. Soylak, Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination. Food Chem. Toxicol. 47 (2009) 1648–1652.
DOI: 10.1016/j.fct.2009.04.024
Google Scholar
[28]
M.J. Ahmed , M. Alam,. A rapid spectrophotometric method for the determination of mercury in environmental, biological, soil and plant samples using diphenylthiocarbazone. Spectroscopy. 17 (2003) 45–52.
DOI: 10.1155/2003/250927
Google Scholar
[29]
M.A. Gavrilenko, N.A. Gavrilenko, Polymethacrylate sorbent for the solid-phase extraction of amines. Mend. Comm. 2 (2006) 117–119.
DOI: 10.1070/mc2006v016n02abeh002125
Google Scholar
[30]
N.V. Saranchina, A.V. Sukhanov, D.A. Nedosekin, N.A. Gavrilenko, M.A. Proskurnin, Potentials of thermal lens spectroscopy for polymethacrylate optical sensors, Journal of Analytical Chemistry 66(6) (2011) 623-628.
DOI: 10.1134/s1061934811060189
Google Scholar
[31]
N.A. Gavrilenko, N.V. Saranchina, G.M. Mokrousov, A sensitive optical element for mercury(II), Journal of Analytical Chemistry 62(9) (2007) 832-836.
DOI: 10.1134/s1061934807090043
Google Scholar
[32]
E. Candish, A. Khodabandeh, M. Gaborieau, T. Rodemann, R.A. Shellie, A.A. Gooley, E.F. HilderPoly(ethylene glycol) functionalization of monolithic poly(divinyl benzene) for improved miniaturized solid phase extraction of protein rich samples. Anal. Bioanal. Chem. 409 (2017) 2189–2199.
DOI: 10.1007/s00216-016-0164-y
Google Scholar
[33]
Q. Wang, X. Yang, X. Yang, P. Liu, K. Wang, J. Huang, J. Wang, Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification. Spectrochim. Acta A. 136 (2015) 283–287.
DOI: 10.1016/j.saa.2014.08.129
Google Scholar
[34]
N. Rajesh, G. Gurulakshmanan, Solid phase extraction and spectrophotometric determination of mercury by adsorption of its diphenylthiocarbazone complex on an alumina column. Spectrochim. Acta. A. 69 (2008) 391–395.
DOI: 10.1016/j.saa.2007.04.011
Google Scholar
[35]
A. Moghimi, Preconcentration of mercury by adsorption of its diphenylthiocarbazone complex on an silica gel-immobilized Schiff base diphenylthiocarbazone (DDTC) column and spectrophotometric determination. Orient. J. Chem. 26 (2010) 753.
Google Scholar
[36]
Mokrousov G.M., Gavrilenko N. Electroconductivity of poly(methylmethacrylate) modified with metal ions. Russian J. Physical Chem. A. V. 70 (1) (1996) 150-151.
Google Scholar
[37]
F. Theraulaz, O.P. Thomas, Complexometric determination of mercury (II) in waters by spectrophotometry of its DDTC complex. Microchim. Acta. 113 (1994) 53–59.
DOI: 10.1007/bf01243137
Google Scholar
[38]
M.J. Shaw, P. Jones, P.R. Haddad, DDTC derivatives as sensitive water soluble chromogenic reagents for the ion chromatographic determination of inorganic and organo-mercury in aqueous matrices. Analyst .128 (2003)1209–1212.
DOI: 10.1039/b308834k
Google Scholar
[39]
A. Safavi, M. Bagheri, Design and characteristics of a mercury (II) optode based on immobilization of dithizone on a triacetylcellulose membrane. Sens. Actuat. B. 99 (2004) 608–612.
DOI: 10.1016/j.snb.2004.01.022
Google Scholar