Solid-Phase Formation of Li-Zn Ferrite under High-Energy Impact

Article Preview

Abstract:

The effect of complex high-energy action, including mechanical milling of Li2CO3-Fe2O3-ZnO initial reagents mixture and its consistent heating by the pulsed electron beam on solid-phase synthesis was studied by X-ray powder diffraction and thermal analyses. The initial mixture Li2CO3-Fe2O3-ZnO corresponds to the ferrite with stoichiometric formula: Li0.5(1–x)ZnxFe2.5–0.5xО4, where х = 0.2. The same studies were carried out with thermal heating in a laboratory furnace for detection the effect of radiation on the formation of phase composition lithium-zinc ferrite. Initial mixture was milled in AGO-2S planetary ball mill with a milling speed of 2220 rpm for 60 min. Radiation-thermal synthesis of the milled mixture was carried out by the pulsed electron accelerator (ILU-6) at 600°C and 750°C. The maximum time of the isothermal stage was 60 minutes. According to the X-ray powder diffraction and thermogravimetric analysis, it was found that the complex high-energy action leads to decrease a temperature and time of obtaining lithium-zinc ferrite homogeneous in phase composition. The proposed high-energy regimes allow to synthesized lithium-zinc ferrites at 600 °C for 60 minutes, which is much lower compared to conventional ceramic technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-256

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Thakur, P. Sharma, J.L. Mattei, P. Queffelec, A.V. Truhanov, S.V. Trukhanov, L.V. Panina, A. Thakur. Influence of cobalt substitution on structural, optical, electrical and magnetic properties of nanosized lithium ferrite, J. Mater. Sci. Mater. Electron. 29 (2018) 16507-16515.

DOI: 10.1007/s10854-018-9744-2

Google Scholar

[2] S.A. Mazen, N.I. Abu-Elsaad. Structural, magnetic and electrical properties of the lithium ferrite obtained by ball milling and heat treatment. Appl. Nanosci. 5 (2015) 105-114.

DOI: 10.1007/s13204-014-0297-2

Google Scholar

[3] M.A. Nazir, M. Ul-Islam, I. Ali, H. Ali, B. Ahmad, S.M. Ramay, R. Nadeem, M.F. Ehsan, M.N. Ashiq. Structural, electrical and dielectric properties of multiferroic-spinel ferrite composites. J. Electron. Mater. 45 (2016) 1065-1072.

DOI: 10.1007/s11664-015-4286-3

Google Scholar

[4] S.S Teixeira, M.P. Graça, L.C. Costa. Dielectric, morphological and structural properties of lithium ferrite powders prepared by solid state method. J. Non-Crystalline Solids. 358 (2012) 1924–(1929).

DOI: 10.1016/j.jnoncrysol.2012.06.003

Google Scholar

[5] J. Hrešĉak, B. Maliĉ, J. Cilenšek, A. Benĉan. Solid-state synthesis of undoped and Sr-doped K0.5Na0.5NbO3. J. Therm. Anal. Calorim. 127 (2017) 129-136.

DOI: 10.1007/s10973-016-5615-3

Google Scholar

[6] M. Kavanlooee, B. Hashemi, H. Maleki-Ghaleh, J. Kavanlooee. Effects of annealing on phase evolution, microstructure and magnetic properties of nanocrystalline ball-milled LiZnTi ferrite. J. Electron. Mater. 41 (2012) 3062-3066.

DOI: 10.1007/s11664-012-2235-y

Google Scholar

[7] A.M. Kalinkin, A.V. Usoltsev, E.V. Kalinkina, V.N. Nevedomskii, O.F. Zalkind. Solis-phase synthesis of nanocrystalline lanthanum zirconate using mechanical activation. Russ. J. General. Chem. 87 (2017) 2258-2264.

DOI: 10.1134/s1070363217100024

Google Scholar

[8] E.N. Lysenko, A.V. Malyshev, V.A. Vlasov, E.V. Nikolaev, A.P. Surzhikov. Microstructure and thermal analysis of lithium ferrite pre-milled in a high-energy ball mill. J. Therm. Anal. Calorim. 134 (2018) 127–133.

DOI: 10.1007/s10973-018-7549-4

Google Scholar

[9] A.P. Surzhikov, E.N. Lysenko, V.A. Vlasov, E.V. Nikolaev. Microstructure and reactivity of Fe2O3-Li2CO3-ZnO ferrite system ball-milled in a planetary mill. Thermochim. Acta. 664 (2018) 100-107.

DOI: 10.1016/j.tca.2018.04.015

Google Scholar

[10] U.V. Ancharov, M.A. Mikhailenko, B.P. Tolochko, N.Z. Lyakhov, M.V. Korobeinikov, A.A. Bryazgin, V.V. Bezuglov, E.A. Shtarklev. Synthesis and staging of the phase formation for strontium ferrites in thermal and radiation thermal reactions. IOP Conf. Ser.: Mater. Sci. Eng. 81 (2015) 012122.

DOI: 10.1088/1757-899x/81/1/012122

Google Scholar

[11] V.G. Kostishin, V.G. Andreev, V.V. Korovushkin, D.N. Chitanov, N.A. Yudanov, A.T. Morchenko, A.S. Komlev, A.Yu. Adamtsov, A.N. Nikolaev. Preparation of 2000NN ferrite ceramics by a complete and a short radiation-enhanced thermal sintering process. Inorgan. Mater. 50 (2014) 1317.

DOI: 10.1134/s0020168514110089

Google Scholar

[12] N.K. Kuksanov, S.N. Fadeev, Y.I. Golubenko, D.A. Kogut, A.I. Korchagin, A.V. Lavrukhin, P.I. Nemytov. Development of the model range and improve performance accelerators ELV. Problem. Atom. Sci. Tech. 3 (2012) 15-18.

DOI: 10.56761/efre2022.c1-o-039701

Google Scholar

[13] N.K. Kuksanov, S.N. Fadeev, R.A. Salimov, Y.I. Golubenko, D.A. Kogut, A.I. Korchagin, A.V. Lavrukhin, P.I. Nemytov, E.V. Domurov, A.V. Semenov. Technical facilities for improving the quality of irradiation of materials by ELV accelerators. Phys. Particl. and Nucl. Lett. 11 (2014) 610-614.

DOI: 10.1134/s1547477114050197

Google Scholar

[14] A.P. Surzhikov, E.N. Lysenko, E.A. Sheveleva, A.V. Malyshev, A.L. Astafyev, V.A. Vlasov. X-ray diffraction and magnetic investigation of lithium-zinc ferrites synthesized by electron beam heating. J. Electron. Mater. 47 (2018) 1192-1200.

DOI: 10.1007/s11664-017-5896-8

Google Scholar

[15] E.N. Lysenko, A.P. Surzhikov, V.A. Vlasov, E.V. Nikolaev, A.V. Malyshev, A.A. Bryazgin, M.V. Korobeynikov, M.A. Mikhailenko. Synthesis of substituted lithium ferrites under the pulsed and continuous electron beam heating. Nucl. Instrum. Meth. Phys. Res. Section B: Beam Interactions with Mater. Atoms. 392 (2017) 1-7.

DOI: 10.1016/j.nimb.2016.11.042

Google Scholar

[16] V.V. Bezuglov, A.A. Bryazgin, A.Y. Vlasov, E.N. Kokin, E.A. Shtarklev. New electronic control system for ILU accelerators, initiating the development of unique irradiation system based on them. Phys. Part. Nucl. Lett. 13 (2016) 784-787.

DOI: 10.1134/s1547477116070104

Google Scholar

[17] V.L. Auslender, V.V. Bezuglov, A.A. Bryazgin. ILU type electron accelerators and their using in radiation-techological processes. Vopr. At. Nauki Tekh., Ser.: Tekh. Fiz. Avtomatiz. 58 (2004) 78-85.

Google Scholar

[18] V. Mihalache. Thermal analysis of ball-milled Fe-14Cr-3W-0.4Ti-0.25Y2O3 ferritic steel powder. J. Therm. Anal. Calorim. 124 (2016) 1179-1192.

DOI: 10.1007/s10973-016-5304-2

Google Scholar

[19] D.M. Lin, H.S. Wang, M.L. Lin, M.H. Lin, Y.C. Wu. TG(M) and DTG(M) techniques and some of their application on material study. J. Therm. Anal. Calorim. 58 (1999) 347-353.

Google Scholar

[20] G. Luciani, A. Costantini, F. Branda, P. Scardi, L. Lanotte. Therm. evolution of ferromagnetic metallic glasses. A study using TG(M) technique. J. Therm. Anal. Calorim. 72 (2003) 105-111.

Google Scholar