Influence of Factors Affecting the Parameters of Combustion of Aluminum Nanopowders in the Bulk Layer

Article Preview

Abstract:

The article presents the study of factors affecting the ability to control the self-propagating high-temperature synthesis of nanomaterials. It is established that there are two steps in the combustion process nanomaterial: burning of surface layer and deep combustion area, which can be considered as the thermal explosion. It was found that the surface roughness and the thermal conductivity of the substrate do not affect the combustion front velocity. The presence of glass transition on the substrate surface also does not affect the velocity of the front. It was established that the parameters of the deep combustion area do not depend on the nature of the initiation of combustion, being the second stage of the development of combustion; in all cases this stage is characterized by the same parameters. When varying the type of ignition source, the length of the surface burning front can vary up to 33%. The time of induction of a thermal explosion increases when the bulk layer of powder ignites from above.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-264

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.A. Levashov, A.S. Mukasyan, A.S. Rogachev, D.V. Shtansky, Self-propagating high temperature synthesis of advanced materials and coatings, International Materials Reviews, 62(4) (2017) 203-239.

DOI: 10.1080/09506608.2016.1243291

Google Scholar

[2] A. Hiranaka, X. Yi, G. Saito, J. Niu, T. Akiyama, Effects of Al particle size and nitrogen pressure on AlN combustion synthesis, Ceramics International 43 (2017) 9872.

DOI: 10.1016/j.ceramint.2017.04.170

Google Scholar

[3] Y. Qiu, L. Gao, Nitridation reaction of aluminum powder in flowing ammonia, J. Eur. Ceram. Soc., 23 (2003) 2015-2022.

Google Scholar

[4] Y. Mu, D. Yu, M. Wang, Combustion synthesis of aluminum carbonitride, Int. J. Refract. Met. Hard Mater. 29 (2011) 639-640.

Google Scholar

[5] S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials, Current Opinion in Solid State and Materials Science, 12 (2008) 44–50.

DOI: 10.1016/j.cossms.2008.12.002

Google Scholar

[6] J. Lee, I. Lee, D. Kim, J. Ahn, H. Chung, Effect of starting powder morphology on AlN prepared by combustion reaction, J. Mater. Research, 20 (2005) 659-665.

DOI: 10.1557/jmr.2005.0089

Google Scholar

[7] Y.A. Amelkovich, O.B. Nazarenko, A.I. Sechin, K.O. Fryanova, Investigation of dependence between thermal stability for nanodispersed metals and velocity of flame spreading and time storage, Appl. Mech. Mater. 682 (2014) 357-362.

DOI: 10.4028/www.scientific.net/amm.682.357

Google Scholar

[8] A.A. Gromov, O.B. Nazarenko, D.V. Tikhonov, A.P. Iljin, Y.I. Pautova, Electroexplosive nanometals, in: A.A. Gromov, U. Teipel (Eds.), Metal Nanopowders: Production, Characterization, and Energetic Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, p.67–78.

DOI: 10.1002/9783527680696.ch3

Google Scholar

[9] Y.S. Kwon, J.C. Kim, A.P. Ilyin, O.B. Nazarenko, D.V. Tikhonov, Electroexplosive technology of nanopowders production: current status and future prospects, J. Korean Powder Metall. Inst. 19(1) (2012) 40-48.

DOI: 10.4150/kpmi.2012.19.1.040

Google Scholar

[10] Y.S. Kwon, A.A. Gromov, A.P. Ilyin, G.H. Rim, Passivation process for superfine aluminum powders obtained by electrical explosion of wires, Appl. Surf. Sci. 211(1–4) (2003) 57-67.

DOI: 10.1016/s0169-4332(03)00059-x

Google Scholar

[11] M.I. Lerner, E.A. Glazkova, A.S. Lozhkomoev, N.V. Svarovskaya, O.V. Bakina, A.V. Pervikov, S.G. Psakhie, Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen, Powder Technol. 295 (2016) 307-314.

DOI: 10.1016/j.powtec.2016.04.005

Google Scholar

[12] A.V. Pervikov, M. Lerner, K. Krukovskii, Structural characteristics of copper nanoparticles produced by the electric explosion of wires with different structures of metal grains, Curr. Appl. Phys. 17(2) (2017) 201-206.

DOI: 10.1016/j.cap.2016.11.026

Google Scholar

[13] GOST 19433-88. Dangerous goods. Classification and marking.

Google Scholar

[14] A. Sechin, O. Nazarenko, Y. Amelkovich, Investigation of the possibility for control of high-temperature synthesis of nanomaterials, Mater. Sci. Forum 942 (2019) 1-10.

DOI: 10.4028/www.scientific.net/msf.942.1

Google Scholar

[15] GOST 12.1.044-89. Occupational safety standards system. Fire and explosion hazard of substances and materials. Nomenclature of indices and methods of their determination.

Google Scholar

[16] Y.S. Kwon, J.S. Moon, A.P. Ilyin, A.A. Gromov, E.M. Popenko, Estimation of the reactivity of aluminum superfine powders for energetic applications, Combustion Science and Technology 176(2) (2004) 277-288.

DOI: 10.1080/00102200490255992

Google Scholar

[17] A.A. Gromov, A.P. Il'In, U. Foerter-Barth, U. Teipel, Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders. Combustion, Explosion and Shock Waves 42(2) (2006) 177-184.

DOI: 10.1007/s10573-006-0036-4

Google Scholar

[18] Y.S. Kwon, A.A. Gromov, J.I. Strokova, Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Appl.Surf. Sci. 253(12) (2007) 5558-5564.

DOI: 10.1016/j.apsusc.2006.12.124

Google Scholar

[19] U. von Pidoll, The ignition of clouds of sprays, powders and fibers by flames and electric sparks, J. Loss Prevent. Proc. 14(2) (2001) 103–109.

DOI: 10.1016/s0950-4230(00)00035-8

Google Scholar

[20] M. Thiele, J. Warnatz, A. Dreizler, S. Lindenmaier, R. Schiesl, U. Mass, A. Grant, P. Ewart, Spark ignited hydrogen/air mixtures: two dimensional detailed modeling and laser based diagnostics, Combustion & Flame 128 (2002) 74–87.

DOI: 10.1016/s0010-2180(01)00333-9

Google Scholar

[21] M. Andrych-Zalewska, Improving the environmental performance of the internal combustion engine by the use in-cylinder catalyst, Combustion Engines 168(1) (2017) 129–132.

DOI: 10.19206/ce-2017-120

Google Scholar

[22] C. Yuan, J. Cai, P. Amyotte, C. Li, J. Hao, G. Li, Effect of sample orientation on fire hazard of non-metallic dust layers exposed to electric sparks, J. Loss Prevent. Proc. 54 (2018) 229–237.

DOI: 10.1016/j.jlp.2018.04.001

Google Scholar

[23] R.S. Magee, R.F. McAlevy, The mechanism of flame spread, J. Fire Flammabl 2 (1971) 271–297.

Google Scholar

[24] A. Ito, Y. Kudo, H. Oyama, Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations, Combust. Flame 142 (2005) 428–437.

DOI: 10.1016/j.combustflame.2005.04.004

Google Scholar

[25] W. An, X. Huang, Q. Wang, Y. Zhang, J. Sun, K.M. Liew, H. Wang, H. Xiao, Effects of sample width and inclined angle on flame spread across expanded polystyrene surface in plateau and plain environments, Journal of Thermoplastic Composite Materials 28(1) (2015) 111–127.

DOI: 10.1177/0892705713486132

Google Scholar

[26] X. Huang, W. Liu, G. Chen, Y. Zhang, J. Sun, Effects of Width and Incline Angle on Combustion and Heat Transfer Characteristics of Poly(methyl methacrylate), International Journal of Heat and Mass Transfer 90 (2015) 1046–1055.

Google Scholar

[27] X. Huang, W. Liu, G. Chen, Y. Zhang, J. Sun, Effects of width and incline angle on combustion and heat transfer characteristics of poly(methyl methacrylate), Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering 33(7) (2017) 88–93.

Google Scholar