[1]
E.A. Levashov, A.S. Mukasyan, A.S. Rogachev, D.V. Shtansky, Self-propagating high temperature synthesis of advanced materials and coatings, International Materials Reviews, 62(4) (2017) 203-239.
DOI: 10.1080/09506608.2016.1243291
Google Scholar
[2]
A. Hiranaka, X. Yi, G. Saito, J. Niu, T. Akiyama, Effects of Al particle size and nitrogen pressure on AlN combustion synthesis, Ceramics International 43 (2017) 9872.
DOI: 10.1016/j.ceramint.2017.04.170
Google Scholar
[3]
Y. Qiu, L. Gao, Nitridation reaction of aluminum powder in flowing ammonia, J. Eur. Ceram. Soc., 23 (2003) 2015-2022.
Google Scholar
[4]
Y. Mu, D. Yu, M. Wang, Combustion synthesis of aluminum carbonitride, Int. J. Refract. Met. Hard Mater. 29 (2011) 639-640.
Google Scholar
[5]
S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials, Current Opinion in Solid State and Materials Science, 12 (2008) 44–50.
DOI: 10.1016/j.cossms.2008.12.002
Google Scholar
[6]
J. Lee, I. Lee, D. Kim, J. Ahn, H. Chung, Effect of starting powder morphology on AlN prepared by combustion reaction, J. Mater. Research, 20 (2005) 659-665.
DOI: 10.1557/jmr.2005.0089
Google Scholar
[7]
Y.A. Amelkovich, O.B. Nazarenko, A.I. Sechin, K.O. Fryanova, Investigation of dependence between thermal stability for nanodispersed metals and velocity of flame spreading and time storage, Appl. Mech. Mater. 682 (2014) 357-362.
DOI: 10.4028/www.scientific.net/amm.682.357
Google Scholar
[8]
A.A. Gromov, O.B. Nazarenko, D.V. Tikhonov, A.P. Iljin, Y.I. Pautova, Electroexplosive nanometals, in: A.A. Gromov, U. Teipel (Eds.), Metal Nanopowders: Production, Characterization, and Energetic Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, p.67–78.
DOI: 10.1002/9783527680696.ch3
Google Scholar
[9]
Y.S. Kwon, J.C. Kim, A.P. Ilyin, O.B. Nazarenko, D.V. Tikhonov, Electroexplosive technology of nanopowders production: current status and future prospects, J. Korean Powder Metall. Inst. 19(1) (2012) 40-48.
DOI: 10.4150/kpmi.2012.19.1.040
Google Scholar
[10]
Y.S. Kwon, A.A. Gromov, A.P. Ilyin, G.H. Rim, Passivation process for superfine aluminum powders obtained by electrical explosion of wires, Appl. Surf. Sci. 211(1–4) (2003) 57-67.
DOI: 10.1016/s0169-4332(03)00059-x
Google Scholar
[11]
M.I. Lerner, E.A. Glazkova, A.S. Lozhkomoev, N.V. Svarovskaya, O.V. Bakina, A.V. Pervikov, S.G. Psakhie, Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen, Powder Technol. 295 (2016) 307-314.
DOI: 10.1016/j.powtec.2016.04.005
Google Scholar
[12]
A.V. Pervikov, M. Lerner, K. Krukovskii, Structural characteristics of copper nanoparticles produced by the electric explosion of wires with different structures of metal grains, Curr. Appl. Phys. 17(2) (2017) 201-206.
DOI: 10.1016/j.cap.2016.11.026
Google Scholar
[13]
GOST 19433-88. Dangerous goods. Classification and marking.
Google Scholar
[14]
A. Sechin, O. Nazarenko, Y. Amelkovich, Investigation of the possibility for control of high-temperature synthesis of nanomaterials, Mater. Sci. Forum 942 (2019) 1-10.
DOI: 10.4028/www.scientific.net/msf.942.1
Google Scholar
[15]
GOST 12.1.044-89. Occupational safety standards system. Fire and explosion hazard of substances and materials. Nomenclature of indices and methods of their determination.
Google Scholar
[16]
Y.S. Kwon, J.S. Moon, A.P. Ilyin, A.A. Gromov, E.M. Popenko, Estimation of the reactivity of aluminum superfine powders for energetic applications, Combustion Science and Technology 176(2) (2004) 277-288.
DOI: 10.1080/00102200490255992
Google Scholar
[17]
A.A. Gromov, A.P. Il'In, U. Foerter-Barth, U. Teipel, Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders. Combustion, Explosion and Shock Waves 42(2) (2006) 177-184.
DOI: 10.1007/s10573-006-0036-4
Google Scholar
[18]
Y.S. Kwon, A.A. Gromov, J.I. Strokova, Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Appl.Surf. Sci. 253(12) (2007) 5558-5564.
DOI: 10.1016/j.apsusc.2006.12.124
Google Scholar
[19]
U. von Pidoll, The ignition of clouds of sprays, powders and fibers by flames and electric sparks, J. Loss Prevent. Proc. 14(2) (2001) 103–109.
DOI: 10.1016/s0950-4230(00)00035-8
Google Scholar
[20]
M. Thiele, J. Warnatz, A. Dreizler, S. Lindenmaier, R. Schiesl, U. Mass, A. Grant, P. Ewart, Spark ignited hydrogen/air mixtures: two dimensional detailed modeling and laser based diagnostics, Combustion & Flame 128 (2002) 74–87.
DOI: 10.1016/s0010-2180(01)00333-9
Google Scholar
[21]
M. Andrych-Zalewska, Improving the environmental performance of the internal combustion engine by the use in-cylinder catalyst, Combustion Engines 168(1) (2017) 129–132.
DOI: 10.19206/ce-2017-120
Google Scholar
[22]
C. Yuan, J. Cai, P. Amyotte, C. Li, J. Hao, G. Li, Effect of sample orientation on fire hazard of non-metallic dust layers exposed to electric sparks, J. Loss Prevent. Proc. 54 (2018) 229–237.
DOI: 10.1016/j.jlp.2018.04.001
Google Scholar
[23]
R.S. Magee, R.F. McAlevy, The mechanism of flame spread, J. Fire Flammabl 2 (1971) 271–297.
Google Scholar
[24]
A. Ito, Y. Kudo, H. Oyama, Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations, Combust. Flame 142 (2005) 428–437.
DOI: 10.1016/j.combustflame.2005.04.004
Google Scholar
[25]
W. An, X. Huang, Q. Wang, Y. Zhang, J. Sun, K.M. Liew, H. Wang, H. Xiao, Effects of sample width and inclined angle on flame spread across expanded polystyrene surface in plateau and plain environments, Journal of Thermoplastic Composite Materials 28(1) (2015) 111–127.
DOI: 10.1177/0892705713486132
Google Scholar
[26]
X. Huang, W. Liu, G. Chen, Y. Zhang, J. Sun, Effects of Width and Incline Angle on Combustion and Heat Transfer Characteristics of Poly(methyl methacrylate), International Journal of Heat and Mass Transfer 90 (2015) 1046–1055.
Google Scholar
[27]
X. Huang, W. Liu, G. Chen, Y. Zhang, J. Sun, Effects of width and incline angle on combustion and heat transfer characteristics of poly(methyl methacrylate), Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering 33(7) (2017) 88–93.
Google Scholar