[1]
U.S. EPA, Regulatory impact analysis of the clean air mercury rule: EPA-452/R-05-003, (2005).
Google Scholar
[2]
B.L. Carson, H.V. Ellis III, J.L. McCann, Toxicology and Biological Monitoring of Metals in Humans, (1986).
Google Scholar
[3]
M.M. Paoliello, E.M. De Capitani, Environmental contamination and human exposure to lead in Brazil, in: Reviews of Environmental Contamination and Toxicology, Springer, (2005).
DOI: 10.1007/0-387-27565-7_2
Google Scholar
[4]
R. Łużny, M. Ignasiak, J. Walendziewski, Heavy metal ions removal from aqueous solutions using carbon aerogels and xerogels, CHEMIK 68 (2014) 544-553.
Google Scholar
[5]
R. Eisert, J. Pawliszyn, Design of automated solid-phase microextraction for trace analysis of organic compounds in aqueous samples, J. Chromatogr. A 776 (1997) 293–303.
DOI: 10.1016/s0021-9673(97)00332-4
Google Scholar
[6]
N.A. Gavrilenko, S.V. Muravyov, S.V. Silushkin, A.S. Spiridonova, Polymethacrylate optodes: A potential for chemical digital color analysis, Measurement: J. Int. Measur. Conf. 51(2014) 464-469.
DOI: 10.1016/j.measurement.2013.11.027
Google Scholar
[7]
L.F. Capitán-Vallvey, A.J. Palma, Recent developments in handheld and portable optosensing — a review, Anal. Chim. Acta 696 (2011) 27–46.
DOI: 10.1016/j.aca.2011.04.005
Google Scholar
[8]
A. Roda, E. Michelini, M. Zangheri, M. Di, D. Calabria, P. Simoni, Smartphone-based biosensors: a critical review and perspectives, Trends Anal. Chem. 79 (2016) 317–325.
DOI: 10.1016/j.trac.2015.10.019
Google Scholar
[9]
L. Zhu, L. Xu, B. Huang, N. Jia, L.Tan, S. Yao Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry at a gold nanoparticlegraphene-cysteine composite modified bismuth film electrode, Electrochim. Acta. 115 (2014) 471–477.
DOI: 10.1016/j.electacta.2013.10.209
Google Scholar
[10]
F.-H. Wang, C.-W. Cheng, L.-C. Duan, W. Lei, M.-Z. Xiac, F.-Y. Wang Highly selective fluorescent sensor for Hg2+ ion based on a novel rhodamine B derivative, Sens. Actuators B. 206 (2015) 679–683.
DOI: 10.1016/j.snb.2014.10.008
Google Scholar
[11]
Y.-Y. Lu, J. Wu, Z.-K. Xu Colorimetric and fluorescent sensor constructing from the nanofibrous membrane of porphyrinated polyimide for the detection of hydrogen chloride gas, Sens. Actuators B. 148 (2010) 233–239.
DOI: 10.1016/j.snb.2010.05.029
Google Scholar
[12]
S. Pu, T. Wang, G. Liu, W. Liu, S. Cui A new photoinduced fluorescent switch based on a photochromic diarylethene with a rhodaminefluorophore. Dye Pigm. 94 (2012) 416-422.
DOI: 10.1016/j.dyepig.2012.02.012
Google Scholar
[13]
G. Mehrorang, R.F. Mohammad, S. Ardeshir, S. Fahimeh Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy, Anal. Lett. 39 (2006) 1171–1185.
DOI: 10.1080/00032710600622167
Google Scholar
[14]
I. Serafimovski, I. Karadjova, T. Stafilov, J. Cvetkovic Determination of inorganic and methylmercury in fish by cold vapor atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry, Microchem. J. 89 (2008) 42–47.
DOI: 10.1016/j.microc.2007.11.003
Google Scholar
[15]
S. Thangavel, K. Dash, S.M. Dhavile, A.C. Sahayam Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES), Talanta. 131 (2005) 505–509.
DOI: 10.1016/j.talanta.2014.08.026
Google Scholar
[16]
E. Kenduzler, M. Ates, Z. Arslan, M. McHenry, P.B. Tchounwou Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS), Talanta. 93 (2012) 404–410.
DOI: 10.1016/j.talanta.2012.02.063
Google Scholar
[17]
R. Voegborlo, A. Adimado A simple classical wet digestion technique for the determination of total mercury in fish tissue by cold-vapour atomic absorption spectrometry in a low technology environment, Food. Chem. 123 (2010) 936–940.
DOI: 10.1016/j.foodchem.2010.04.059
Google Scholar
[18]
G. Saikia, A. C. McDonagh, C.S. Burke, B.D. MacCraith Optical chemical sensors, Chem. Rev. 108 (2008) 400–422.
DOI: 10.1021/cr068102g
Google Scholar
[19]
N. Kaur, S. Kumar Colorimetric metal ion sensors, Tetrahedron. 67 (2011) 9233-9264.
DOI: 10.1016/j.tet.2011.09.003
Google Scholar
[20]
Optical sensors: Industrial, Environmental and Diagnostic Applications, Narayanaswamy, R. and Wolfbeis, O.S., Eds., New York: Springer, (2004).
Google Scholar
[21]
T. Lou, L. Chen, Z. Chen, Y. Wang, L. Chen, J. Li Colorimetric detection of trace copper ions based on catalytic leaching of silver coated gold nanoparticles, ACS Appl. Mater. Interfacesю 3 (2011) 4215–4220.
DOI: 10.1021/am2008486
Google Scholar
[22]
K. Zargoosh, F.F. Babadi Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane, Spectrochim. Acta A. 137 (2015) 105–110.
DOI: 10.1016/j.saa.2014.08.043
Google Scholar
[23]
M.A. Gavrilenko, N.A. Gavrilenko Polymethacrylate sorbent for solid phase extraction of amines, Mend. Comm. 2 (2006) 117-119.
DOI: 10.1070/mc2006v016n02abeh002125
Google Scholar
[24]
H.N. Kim, Z. Guo, W. Zhu, J. Yoon and H. Tian Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chem. Soc. Rev., 40 (2011) 79-93.
DOI: 10.1039/c0cs00058b
Google Scholar
[25]
D. Tseng, O. Mudanyali, C. Oztoprak, S.O. Isikman, I. Sencan, O. Yaglidere Lens free microscopy on a cellphone, Lab Chip. 10 (2010) 1787–1792.
DOI: 10.1039/c003477k
Google Scholar
[26]
M. Ariza-Avidad, A. Salinas-Castillo, M.P. Cuéllar, M. Agudo-Acemel, M.C. Pegalajar, L.F. Capitán-Vallvey Printed disposable colorimetric array for metal ion discrimination, Anal. Chem. 86 (2014) 8634–8641.
DOI: 10.1021/ac501670f
Google Scholar
[27]
A. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, A. Ozcan A personalized food allergen testing platform on a cellphone, Lab Chip. 13 (2012) 636–640.
DOI: 10.1039/c2lc41152k
Google Scholar
[28]
S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care, Lab Chip. 11 (2011) 3411–3418.
DOI: 10.1039/c1lc20479c
Google Scholar
[29]
N.R. Pollock, J.P. Rolland, S. Kumar, P.D. Beattie, S. Jain, F. Noubary A paper based multiplexed transaminase test for low-cost, point-of-care liver function testing, Sci. Transl. Med. 4 (2012) 152ra29.
DOI: 10.1126/scitranslmed.3003981
Google Scholar
[30]
E. Kaneko. Development of visual analytical methods for trace determination. Analytical Sciences 20 (2004) 247-254.
DOI: 10.2116/analsci.20.247
Google Scholar
[31]
E. Hirayama, T. Sugiyama, H. Hisamoto, K. Suzuki Visual and colorimetric lithium ion sensing based on digital color analysis, Anal. Chem. 72 (2000) 465-474.
DOI: 10.1021/ac990588w
Google Scholar
[32]
O. Mudanyali, S. Dimitrov, U. Sikora, S. Padmanabhan, I. Navruz, A. Ozcan Integrated rapid-diagnostic-test reader platform on a cellphone, Lab Chip. 12 (2012) 2678–2686.
DOI: 10.1039/c2lc40235a
Google Scholar
[33]
S.K. Vashist, O. Mudanyali, E.M. Schneider, R. Zengerle, A. Ozcan. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 406 (2014) 3263–3277.
DOI: 10.1007/s00216-013-7473-1
Google Scholar
[34]
V.F. Pamplona, A. Mohan, M.M. Oliveira, R. Raskar, Dual of Shack-Hartmann Optometry Using Mobile Phones, Frontiers in Optics, Optical Society of America, Rochester, NY, (2010).
DOI: 10.1364/fio.2010.ftub4
Google Scholar
[35]
H. Zhu, S. Mavandadi, A.F. Coskun, O. Yaglidere, A. Ozcan Optofluidic fluorescent imaging cytometry on a cell phone, Anal. Chem. 83 (2011) 6641–6647.
DOI: 10.1021/ac201587a
Google Scholar
[36]
Z.J. Smith, K. Chu, A.R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro Cell-phone-based platform for biomedical device development and education applications, PLoS ONE 6 (2011) e17150.
DOI: 10.1371/journal.pone.0017150
Google Scholar
[37]
N. A. Gavrilenko, N. V. Saranchina, M. A. Gavrilenko A colorimetric sensor based on a polymethacrylate matrix with immobilized 1-(2-pyridylazo)-2-naphthol for the determination of cobalt, J. Anal. Chem. 70 (2015) 1475-1479.
DOI: 10.1134/s1061934815120060
Google Scholar
[38]
G.M. Mokrousov, N.A. Gavrilenko, Electroconductivity of poly(methylmethacrylate) modified with metal ions, Zh. Fiz. Khim. 70(1996) 159-161.
Google Scholar
[39]
N.A. Gavrilenko, T.N. Volgina, M.A. Gavrilenko Colorimetric sensor for determination of thiocyanate in fossil and drill waters, Mend. Comm. 27 (2017) 529-530.
DOI: 10.1016/j.mencom.2017.09.034
Google Scholar