Automation of Optical Control of Metal Ions in Liquid Using a Smartphone

Article Preview

Abstract:

A new automated smartphone-based assay for metals ions determination based on the color reaction with organic ligands was developed. Quantification was performed by measuring the color of the polymer optode. This offers a smartphone-based alternative to the colorimeric method for signal treatment usually employed in automatic methods. The technique enabled linear calibration within the range 1–500 ppb of metals ions. The sampling time used for this concentration range was 15 min. The method was also tested for the quantification of metals ions in water samples, followed by digital image treatment of the optode. The automated detection metals ions approach was demonstrated by applying smartphone to the analysis of metals ions. Relative recoveries of the analytes ranged from 87 % to 105 %. The described procedure has the potential to be a fully automated online smartphone platform for the purpose of routine onsite water analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

290-296

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U.S. EPA, Regulatory impact analysis of the clean air mercury rule: EPA-452/R-05-003, (2005).

Google Scholar

[2] B.L. Carson, H.V. Ellis III, J.L. McCann, Toxicology and Biological Monitoring of Metals in Humans, (1986).

Google Scholar

[3] M.M. Paoliello, E.M. De Capitani, Environmental contamination and human exposure to lead in Brazil, in: Reviews of Environmental Contamination and Toxicology, Springer, (2005).

DOI: 10.1007/0-387-27565-7_2

Google Scholar

[4] R. Łużny, M. Ignasiak, J. Walendziewski, Heavy metal ions removal from aqueous solutions using carbon aerogels and xerogels, CHEMIK 68 (2014) 544-553.

Google Scholar

[5] R. Eisert, J. Pawliszyn, Design of automated solid-phase microextraction for trace analysis of organic compounds in aqueous samples, J. Chromatogr. A 776 (1997) 293–303.

DOI: 10.1016/s0021-9673(97)00332-4

Google Scholar

[6] N.A. Gavrilenko, S.V. Muravyov, S.V. Silushkin, A.S. Spiridonova, Polymethacrylate optodes: A potential for chemical digital color analysis, Measurement: J. Int. Measur. Conf. 51(2014) 464-469.

DOI: 10.1016/j.measurement.2013.11.027

Google Scholar

[7] L.F. Capitán-Vallvey, A.J. Palma, Recent developments in handheld and portable optosensing — a review, Anal. Chim. Acta 696 (2011) 27–46.

DOI: 10.1016/j.aca.2011.04.005

Google Scholar

[8] A. Roda, E. Michelini, M. Zangheri, M. Di, D. Calabria, P. Simoni, Smartphone-based biosensors: a critical review and perspectives, Trends Anal. Chem. 79 (2016) 317–325.

DOI: 10.1016/j.trac.2015.10.019

Google Scholar

[9] L. Zhu, L. Xu, B. Huang, N. Jia, L.Tan, S. Yao Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry at a gold nanoparticlegraphene-cysteine composite modified bismuth film electrode, Electrochim. Acta. 115 (2014) 471–477.

DOI: 10.1016/j.electacta.2013.10.209

Google Scholar

[10] F.-H. Wang, C.-W. Cheng, L.-C. Duan, W. Lei, M.-Z. Xiac, F.-Y. Wang Highly selective fluorescent sensor for Hg2+ ion based on a novel rhodamine B derivative, Sens. Actuators B. 206 (2015) 679–683.

DOI: 10.1016/j.snb.2014.10.008

Google Scholar

[11] Y.-Y. Lu, J. Wu, Z.-K. Xu Colorimetric and fluorescent sensor constructing from the nanofibrous membrane of porphyrinated polyimide for the detection of hydrogen chloride gas, Sens. Actuators B. 148 (2010) 233–239.

DOI: 10.1016/j.snb.2010.05.029

Google Scholar

[12] S. Pu, T. Wang, G. Liu, W. Liu, S. Cui A new photoinduced fluorescent switch based on a photochromic diarylethene with a rhodaminefluorophore. Dye Pigm. 94 (2012) 416-422.

DOI: 10.1016/j.dyepig.2012.02.012

Google Scholar

[13] G. Mehrorang, R.F. Mohammad, S. Ardeshir, S. Fahimeh Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy, Anal. Lett. 39 (2006) 1171–1185.

DOI: 10.1080/00032710600622167

Google Scholar

[14] I. Serafimovski, I. Karadjova, T. Stafilov, J. Cvetkovic Determination of inorganic and methylmercury in fish by cold vapor atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry, Microchem. J. 89 (2008) 42–47.

DOI: 10.1016/j.microc.2007.11.003

Google Scholar

[15] S. Thangavel, K. Dash, S.M. Dhavile, A.C. Sahayam Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES), Talanta. 131 (2005) 505–509.

DOI: 10.1016/j.talanta.2014.08.026

Google Scholar

[16] E. Kenduzler, M. Ates, Z. Arslan, M. McHenry, P.B. Tchounwou Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS), Talanta. 93 (2012) 404–410.

DOI: 10.1016/j.talanta.2012.02.063

Google Scholar

[17] R. Voegborlo, A. Adimado A simple classical wet digestion technique for the determination of total mercury in fish tissue by cold-vapour atomic absorption spectrometry in a low technology environment, Food. Chem. 123 (2010) 936–940.

DOI: 10.1016/j.foodchem.2010.04.059

Google Scholar

[18] G. Saikia, A. C. McDonagh, C.S. Burke, B.D. MacCraith Optical chemical sensors, Chem. Rev. 108 (2008) 400–422.

DOI: 10.1021/cr068102g

Google Scholar

[19] N. Kaur, S. Kumar Colorimetric metal ion sensors, Tetrahedron. 67 (2011) 9233-9264.

DOI: 10.1016/j.tet.2011.09.003

Google Scholar

[20] Optical sensors: Industrial, Environmental and Diagnostic Applications, Narayanaswamy, R. and Wolfbeis, O.S., Eds., New York: Springer, (2004).

Google Scholar

[21] T. Lou, L. Chen, Z. Chen, Y. Wang, L. Chen, J. Li Colorimetric detection of trace copper ions based on catalytic leaching of silver coated gold nanoparticles, ACS Appl. Mater. Interfacesю 3 (2011) 4215–4220.

DOI: 10.1021/am2008486

Google Scholar

[22] K. Zargoosh, F.F. Babadi Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane, Spectrochim. Acta A. 137 (2015) 105–110.

DOI: 10.1016/j.saa.2014.08.043

Google Scholar

[23] M.A. Gavrilenko, N.A. Gavrilenko Polymethacrylate sorbent for solid phase extraction of amines, Mend. Comm. 2 (2006) 117-119.

DOI: 10.1070/mc2006v016n02abeh002125

Google Scholar

[24] H.N. Kim, Z. Guo, W. Zhu, J. Yoon and H. Tian Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chem. Soc. Rev., 40 (2011) 79-93.

DOI: 10.1039/c0cs00058b

Google Scholar

[25] D. Tseng, O. Mudanyali, C. Oztoprak, S.O. Isikman, I. Sencan, O. Yaglidere Lens free microscopy on a cellphone, Lab Chip. 10 (2010) 1787–1792.

DOI: 10.1039/c003477k

Google Scholar

[26] M. Ariza-Avidad, A. Salinas-Castillo, M.P. Cuéllar, M. Agudo-Acemel, M.C. Pegalajar, L.F. Capitán-Vallvey Printed disposable colorimetric array for metal ion discrimination, Anal. Chem. 86 (2014) 8634–8641.

DOI: 10.1021/ac501670f

Google Scholar

[27] A. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, A. Ozcan A personalized food allergen testing platform on a cellphone, Lab Chip. 13 (2012) 636–640.

DOI: 10.1039/c2lc41152k

Google Scholar

[28] S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care, Lab Chip. 11 (2011) 3411–3418.

DOI: 10.1039/c1lc20479c

Google Scholar

[29] N.R. Pollock, J.P. Rolland, S. Kumar, P.D. Beattie, S. Jain, F. Noubary A paper based multiplexed transaminase test for low-cost, point-of-care liver function testing, Sci. Transl. Med. 4 (2012) 152ra29.

DOI: 10.1126/scitranslmed.3003981

Google Scholar

[30] E. Kaneko. Development of visual analytical methods for trace determination. Analytical Sciences 20 (2004) 247-254.

DOI: 10.2116/analsci.20.247

Google Scholar

[31] E. Hirayama, T. Sugiyama, H. Hisamoto, K. Suzuki Visual and colorimetric lithium ion sensing based on digital color analysis, Anal. Chem. 72 (2000) 465-474.

DOI: 10.1021/ac990588w

Google Scholar

[32] O. Mudanyali, S. Dimitrov, U. Sikora, S. Padmanabhan, I. Navruz, A. Ozcan Integrated rapid-diagnostic-test reader platform on a cellphone, Lab Chip. 12 (2012) 2678–2686.

DOI: 10.1039/c2lc40235a

Google Scholar

[33] S.K. Vashist, O. Mudanyali, E.M. Schneider, R. Zengerle, A. Ozcan. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 406 (2014) 3263–3277.

DOI: 10.1007/s00216-013-7473-1

Google Scholar

[34] V.F. Pamplona, A. Mohan, M.M. Oliveira, R. Raskar, Dual of Shack-Hartmann Optometry Using Mobile Phones, Frontiers in Optics, Optical Society of America, Rochester, NY, (2010).

DOI: 10.1364/fio.2010.ftub4

Google Scholar

[35] H. Zhu, S. Mavandadi, A.F. Coskun, O. Yaglidere, A. Ozcan Optofluidic fluorescent imaging cytometry on a cell phone, Anal. Chem. 83 (2011) 6641–6647.

DOI: 10.1021/ac201587a

Google Scholar

[36] Z.J. Smith, K. Chu, A.R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro Cell-phone-based platform for biomedical device development and education applications, PLoS ONE 6 (2011) e17150.

DOI: 10.1371/journal.pone.0017150

Google Scholar

[37] N. A. Gavrilenko, N. V. Saranchina, M. A. Gavrilenko A colorimetric sensor based on a polymethacrylate matrix with immobilized 1-(2-pyridylazo)-2-naphthol for the determination of cobalt, J. Anal. Chem. 70 (2015) 1475-1479.

DOI: 10.1134/s1061934815120060

Google Scholar

[38] G.M. Mokrousov, N.A. Gavrilenko, Electroconductivity of poly(methylmethacrylate) modified with metal ions, Zh. Fiz. Khim. 70(1996) 159-161.

Google Scholar

[39] N.A. Gavrilenko, T.N. Volgina, M.A. Gavrilenko Colorimetric sensor for determination of thiocyanate in fossil and drill waters, Mend. Comm. 27 (2017) 529-530.

DOI: 10.1016/j.mencom.2017.09.034

Google Scholar