XRD Analysis of Ferrite Ceramics with Different Heat Treatment

Article Preview

Abstract:

A comparative analysis of the structural characteristics of LiZnTi ferrites sintered at the temperature of 1280 and 1360 K was performed. The qualitative and quantitative X-ray diffraction (XRD) analysis of the samples, main phase structural analysis, and unit cell parameters were carried out using the non-standard method (Rietveld method). Diffraction patterns were recorded on an ARL X'TRA diffractometer in the CuKα1+α2 and CuKβ scanning modes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

314-319

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. Ridgley, H. Lessoff, J.D. Childress, Effects of lithium and oxygen losses on magnetic and crystallographic properties of spinel lithium ferrite, J. Amer. Ceram. Soc. 53 (1970) 304-311.

DOI: 10.1111/j.1151-2916.1970.tb12113.x

Google Scholar

[2] D. Jugović, M. Mitrić, N. Cvjetićanin, B. Jančar, S. Mentus, D. Uskoković, Synthesis and characterization of LiFePO4/C composite obtained by sonochemical method, Sol. St. Ion. 179 (2008) 415-419.

DOI: 10.1016/j.ssi.2008.03.014

Google Scholar

[3] M. Abbas, B. Parvatheeswara Rao, C. Kim, Shape and size-controlled synthesis of Ni Zn ferrite nanoparticles by two different routes, Mater. Ch. and Phys. 147 (2014) 443-451.

DOI: 10.1016/j.matchemphys.2014.05.013

Google Scholar

[4] M. Yasuoka, Y. Nishimura, T. Nagaoka, K. Watari, Influence of different methods of controlling microwave sintering, J. Therm. Anal. and Calorim. 83 (2006) 407-410.

DOI: 10.1007/s10973-004-6725-x

Google Scholar

[5] H.M. Widatallah, X-L. Ren, I.A. Al-Omari, The influence of TiO2 polymorph, mechanical milling and subsequent sintering on the formation of Ti-substituted spinel-related Li0.5Fe2.5O4, J. Mater. Sc. 41 (2006) 63336338.

DOI: 10.1007/s10853-006-0721-4

Google Scholar

[6] M. Kavanlooee, B. Hashemi, H. Maleki-Ghaleh, J. Kavanlooee, Effects of annealing on phase evolution, microstructure and magnetic properties of nanocrystalline ball-milled LiZnTi ferrite, J. of Electr. Mater. 41 (2012) 3082-3086.

DOI: 10.1007/s11664-012-2235-y

Google Scholar

[7] A.A. Cristobal, P.M. Botta, Mechanochemically assisted synthesis of nanocrystalline BiFeO3, Mater. Ch. and Phys. 139 (2013) 931-935.

DOI: 10.1016/j.matchemphys.2013.02.058

Google Scholar

[8] S. Dey, S.K. Dey, B. Ghosh, V.R. Reddy, S. Kumar, Structural, microstructural, magnetic and hyperfine characterization of nanosized Ni0.5Zn0.5Fe2O4 synthesized by high energy ball-milling method, Mater. Ch. and Phys. 138 (2013) 833-842.

DOI: 10.1016/j.matchemphys.2012.12.067

Google Scholar

[9] V.V. Boldyrev, A.P. Voronin, O.S. Gribkov, E.V. Tkachenko, G.R. Karagedov, B.I. Yakobson, V.L. Auslender, Radiation-thermal synthesis. Current achievement and outlook, Solid Stat. Ion. 36 (1989) 1-6.

DOI: 10.1002/chin.199018315

Google Scholar

[10] N.Z. Lyakhov, V.V. Boldyrev, A.P. Voronin, O.S. Gribkov, I.G. Bochkarev, S.V. Rusakov, V.L. Auslender, Electron beam stimulated chemical reaction in solids, J. Therm. Anal. 43 (1995) 21-31.

DOI: 10.1007/bf02635965

Google Scholar

[11] V.L. Auslender, I.G. Bochkarev, V.V. Boldyrev, N.Z. Lyakhov, A.P. Voronin, Electron beam induced diffusion controlled reaction in solids, Solid Stat. Ion. 101-103 (1997) 489-493.

DOI: 10.1016/s0167-2738(97)84073-8

Google Scholar

[12] V.A. Neronov, A.P. Voronin, M.I. Tatarintseva, T.E. Melekhova, V.L. Auslender, Sintering under a high-power electron beam, J. The Less-Common Metals, 117 (1986) 391-394.

DOI: 10.1016/0022-5088(86)90065-2

Google Scholar

[13] I.V. Plotnikova, N.V. Chicherina, S.S. Bays, R.G. Bildanov, O. Stary, The selection criteria elements of X-ray optics system, IOP Conf. Ser.: Mater. Sci. Eng., 289 (2018) 012029.

DOI: 10.1088/1757-899x/289/1/012029

Google Scholar

[14] V.A. Zhuravlev, E.P. Naiden, R.V. Minin, V.I. Itin, V.I. Suslyaev, E.Yu. Korovin, Radiation-thermal synthesis of W-type hexaferrites, IOP Conf. Ser.: Mater. Sci. Eng. 81 (2015) 012003.

DOI: 10.1088/1757-899x/81/1/012003

Google Scholar

[15] V.G. Kostishin, V.G. Andreev, V.V. Korovushkin, D.N. Chitanov, N.A. Yudanov, A.T. Morchenko, A.S. Komlev, A.Yu. Adamtsov, A.N. Nikolaev, Preparation of 2000NN Ferrite Ceramics by a Complete and a Short Radiation-Enhanced Thermal Sintering Process, Inorg. Mater. 50 (2014) 1317-1323.

DOI: 10.1134/s0020168514110089

Google Scholar

[16] E.N. Lysenko, A.P. Surzhikov, V.A. Vlasov, E.V. Nikolaev, A.V. Malyshev, A.A. Bryazgin, M.V. Korobeynikov, M.A. Mikhailenko, Synthesis of substituted lithium ferrites under the pulsed and continuous electron beam heating, Nucl. Instrum. Meth. Phys. Res., B 392 (2017) 1-7.

DOI: 10.1016/j.nimb.2016.11.042

Google Scholar

[17] E. Ph. Pevtsov, T.A. Demenkova, P.A. Luchnikov, V.V. Vetrova, Analysis of the thermal modes of Focal Plane Arrays, IOP Conf. Ser.: Mater. Sci. Eng. 168 (2017) 012095.

DOI: 10.1088/1757-899x/168/1/012095

Google Scholar

[18] P.A. Luchnikov, O.A. Sarkisov, A.A. Rogachev, E.Ph. Pevtsov, T.A. Demenkova, Mechanisms of change of superficial properties of polymeric materials in discharge plasma IOP Conf. Ser.: Mater. Sci. Eng. 168 (2017) 012092.

DOI: 10.1088/1757-899x/168/1/012092

Google Scholar

[19] S. Kanagesan, M. Hashim, S. Jesurani, T. Kalaivani, I. Ismail, Influence of Zn–Nb on the Magnetic Properties of Barium Hexaferrite, J. Supercond. Nov. Magn. 27 (2014) 811–815.

DOI: 10.1007/s10948-013-2357-3

Google Scholar

[20] A.G. Flegler, T.E. Burye, Q. Yang, J.D. Nicholas, Cubic yttria stabilized zirconia sintering additive impacts: A comparative study, Ceram. Int. 40 (2014) 16323-16335.

DOI: 10.1016/j.ceramint.2014.07.071

Google Scholar

[21] T. Králík, J. Bemš, O. Starý, Electricity markets integrations - What is the current status and future outlook of bidding zones reconfiguration? Proceedings of the 9th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA (2017) 237-240.

Google Scholar