[1]
Yu.S. Borisov, N.V. Vigilyanskaya, I.A. Demyanov, A.P. Grishchenko, A.P. Murashov, Automatic welding, Research of dispersion of heterogeneous wire materials in the course of arc evaporation, Institute of electric welding of E. O. Patton NANU, Kiev, 2013, pp.25-30.
Google Scholar
[2]
H. Li, L. Ji, T. Wei, Significant technical progress in the West-East Gas pipeline projects line one and line two, Nat Gas Ind 30(4) (2010) 1-9.
Google Scholar
[3]
R. Wang, G. Ruijie, Developments of automatic girth welding technology in pipelines, Electr Weld Mach 41(9) (2011) 53-55.
Google Scholar
[4]
Z. Huilin, W. Changjiang, Y. Xuemei, W. Xinsheng, L. Ran, Automatic welding technologies for long-distance pipelines by use of all-position self-shielded flux cored wires, 1(1) (2014) 113-118, https://doi.org/10.1016/j.ngib.2014.10.015.
DOI: 10.1016/j.ngib.2014.10.015
Google Scholar
[5]
G. Zhetessova, Ye. Pleshakova, V. Yurchenko, Ye. Platonova, T. Buzauova, Building mathematical model for gas-thermal process of coating evaporation, Metalurgija, Zagreb, 55(1) (2016) 63-66.
Google Scholar
[6]
S. Bracco, F. Delfino, A mathematical model for the dynamic simulation of low size cogeneration gas turbines within smart microgrids, Energy 119 (2017) 710-723.
DOI: 10.1016/j.energy.2016.11.033
Google Scholar
[7]
I. Plotnikova, L. Redko, N. Chicherina, O. Tchaikovskaya, J. Bastida, Analysis of quality of welded joints of iron-concrete products, Materials Science Forum, 942 (2019) 121-130,.
DOI: 10.4028/www.scientific.net/msf.942.121
Google Scholar
[8]
V.N. Boronenkov, YU.S's Boxes, Physical and chemical regularities. Bases of electro arc metallization, Ural. Univerta publishing house, Yekaterinburg, (2012).
Google Scholar
[9]
Min Ho et al., Bifunctionally active and durable hierarchically porous transition metal-based hybrid electrocatalyst for rechargeable metal-air batteries, Applied Catalysis B: Environmental 239 (2018) 677-687, https://doi.org/10.1016/j.apcatb.2018.06.006.
DOI: 10.1016/j.apcatb.2018.06.006
Google Scholar
[10]
A.I. Nizhegorodov et al., Testing a new alternative electric furnace for vermiculite concentrates heat treatment, Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering 329(4) (2018) 142-153.
Google Scholar
[11]
N.N. Kopanits, D.G. Yugov, N.T. Bels, Mathematical simulation of dynamic durability of constructional materials, Science, Moscow, (2013).
Google Scholar
[12]
B.I. Kapranov, G.V. Vavilova, A.V. Volchkova, Mathematical modeling of tomographic scanning of cylindrically shaped test objects, IOP Conference Series: Materials Science and Engineering 363(1) (2018) 012015, https://doi.org/10.1088/1757-899X/363/1/012015.
DOI: 10.1088/1757-899x/363/1/012015
Google Scholar
[13]
J. Bai, Durability of sustainable construction materials, Sustainability of Construction Materials (Second Edition), Woodhead Publishing Series in Civil and Structural Engineering, 2016, pp.397-414, https://doi.org/10.1016/B978-0-08-100370-1.00016-0.
DOI: 10.1016/b978-0-08-100370-1.00016-0
Google Scholar
[14]
N.N. Strukov, D.S. Belinin, P.S. Kuchev, Yu.D. Shchitsyn, Regulation of the size of particles of powders in case of plasma pulverization of bar material, Science, Perm, (2011).
Google Scholar
[15]
L.P. Zhang, Y.Y. Zhao, Particle size distribution of tin powder produced by centrifugal atomisation using rotating cups, Powder Technology 318 (2017) 62-67, https://doi.org/10.1016/j.powtec.2017.05.038.
DOI: 10.1016/j.powtec.2017.05.038
Google Scholar
[16]
G.G. Khaydarov, A.G. Khaydarov etc., Physical nature of the superficial tension of liquid. Vestnik, Saint-Petersburg University. Physics, Chemistry 4(1) (2011) 3-7.
Google Scholar
[17]
M. Korzynski, Relief making on bearing sleeve surface by eccentric burnishing, Journal of Materials Processing Technology 209(1) (2009) 131-138, https://doi.org/10.1016/j.jmatprotec.2008.01.058.
DOI: 10.1016/j.jmatprotec.2008.01.058
Google Scholar