[1]
V.E. Gunther, G.Ts. Dambaev, P.G. Sysoliatin, Delay Law and New Class of Materials and Implants in Medicine, STT Publishing, Northampton (MA), (2000).
Google Scholar
[2]
G. Tosun, M. Kilic, L. Ozler, N. Tosun, Characterization of a porous nickel-titanium alloy produced with self-propagating high-temperature synthesis, Materials and technology 4 (2018) 435–442. https://doi.org/10.17222/mit.2017.156.
DOI: 10.17222/mit.2017.156
Google Scholar
[3]
A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. , Porous NiTi for bone implants: A review, Acta Biomater 4 (2008) 773–782. https://doi.org/10.1016/j.actbio.2008.02.009.
DOI: 10.1016/j.actbio.2008.02.009
Google Scholar
[4]
M. Chembath, J. N. Balaraju, M. Sujata, Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy, Materials Science and Engineering: C. 56 (2015) 417-425. https://doi.org/10.1016/j.msec.2015.06.051.
DOI: 10.1016/j.msec.2015.06.051
Google Scholar
[5]
I. Borovinskaya, A. Gromov, E. Levashov, Y. Maksimov, A. Mukasyan, A. Rogachev, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis. History, Theory, Technology, and Products, 2017. https://doi.org/10.1016/C2015-0-00439-7.
DOI: 10.1016/b978-0-12-804173-4.00152-6
Google Scholar
[6]
H.j. Feng, J.J. Moore, D.G. Wirth, Combustion Synthesis of Ceramic-Metal Composite Materials: The ZrB,.AI,o,-AI System, International Symposium on Self-Propagating High Temperature Synthesis (SHS), 1 (1992) 227-238.
Google Scholar
[7]
N. Resnina, S. Belyaev, A. Voronkov, Functional Properties of Porous Ti-48.0 at.% Ni Shape Memory Alloy Produced by Self-Propagating High-Temperature Synthesis, Journal of Materials Engineering and Performance 27 (2018). https://doi.org/10.1007/s11665-018-3231-z.
DOI: 10.1007/s11665-018-3231-z
Google Scholar
[8]
P. Bassani, S. Panseri, A. Ruffini, M. Montesi, M. Ghetti, C. Zanotti, A. Tampieri, A. Tuissi, Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3, J Mater Sci: Mater Med. 25 (2014) 2277–2285. https://doi.org/10.1007/s10856-014-5253-x.
DOI: 10.1007/s10856-014-5253-x
Google Scholar
[9]
G.V. Markova, A.V. Kasimtsev, A. V. Shuytcev, T. A. Sviridova, The features of structure formation of TiNi sintered intermetallic compound, Inorganic Materials: Applied Research 6 (2015) 350-354. https://doi.org/10.1134/S2075113315040164.
DOI: 10.1134/s2075113315040164
Google Scholar
[10]
V.Gunther, YuYasenchuk, T. Chekalkin, E. Marchenko, S. Gunther, G. Baigonakova, V. Hodorenko, Ji-h. Kang, S. Weiss, A. Obrosov, Formation of pores and amorphous-nanocrystalline phases in porous TiNi alloys made by self-propagating high-temperature synthesis (SHS), Advanced Powder Technology 30 (2019) 673-680. https://doi.org/10.1016/j.apt.2018.12.011.
DOI: 10.1016/j.apt.2018.12.011
Google Scholar
[11]
P. Istomin, A.Nadutkin, V. Grass. Fabrication of Ti3SiC2-based composites from titania-silica raw material, Materials Chemistry and Physics 162 (2015) 216-221. https://doi.org/10.1016/j.matchemphys.2015.05.060.
DOI: 10.1016/j.matchemphys.2015.05.060
Google Scholar
[12]
D. Riley, E. Kisi, D. Phelan. SHS of Ti3SiC2: ignition temperature depression by mechanical activation, Journal of the European Ceramic Society 26 (2006) 1051-1058. https://doi.org/10.1016/j.jeurceramsoc.2004.11.021.
DOI: 10.1016/j.jeurceramsoc.2004.11.021
Google Scholar
[13]
L. Santo, J.P. Davim, Nanocomposite coatings: A review, in: J.P. Davim (Eds), Materials and Surface Engineering. Research and Development, Woodhead Publishing, 2012 pp.97-120. https://doi.org/10.1533/9780857096036.97.
DOI: 10.1533/9780857096036.97
Google Scholar
[14]
H.Caliskan, P.Panjan, C.Kurbanoglu, Hard Coatings on Cutting Tools and Surface Finish, in M.S.J. Hashmi(Eds): Comprehensive Materials Finishing, Elsevier, 3(2017) pp.230-242. https://doi.org/10.1016/B978-0-12-803581-8.09178-5.
DOI: 10.1016/b978-0-12-803581-8.09178-5
Google Scholar
[15]
B. Chang, K.K.H. Svoboda, X. Liu, Cell polarization: From epithelial cells to odontoblasts, European Journal of Cell Biology 98 (2019) 1-11. https://doi.org/10.1016/j.ejcb.2018.11.00.
DOI: 10.1016/j.ejcb.2018.11.003
Google Scholar