Simulation of Structural Transformations in Modified Near-Surface Layers of Crystals

Article Preview

Abstract:

Superlattice formation in thin layers of oxidizing crystals and the effect of near-surface proton saturation on structure ordering, formation and periodical distribution of quantum wells have been discussed. The paper shows, it is necessary to develop non-Euclidean approach to the crystal’s internal geometry and consider, in consecutive order, the question of the four-dimentional Riemannian space into three-dimentional Eucliden space interpretation (RE interpretation).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

276-282

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.V. Borodin, D.S. Ermolaev, V. Pak and, K. Zhang, Research of nanocomposite structure of boron nitride at proton radiation, IOP Conference Series: Materials Science and Engineering 110(1) (2016) 012072.

DOI: 10.1088/1757-899x/110/1/012072

Google Scholar

[2] R. Tsu, E.H. Nicollian and A. Reisman, Passivation defects in polycrystalline superlattices and quantum well structures, Appl. Phys. Lett. 55(18) (1989) 1897–1899.

DOI: 10.1063/1.102328

Google Scholar

[3] Y. V. Borodin and A. N. Sergeev, The formation of nanocomposition structure in crystals,2008 Proceedings of the 3rd International Forum on Strategic Technology, IFOST 2008 (2008) 174-176.

DOI: 10.1109/ifost.2008.4603001

Google Scholar

[4] S. Furukawa, T. Miyasato, Three-dimensional quantum well effects in ultrafiae silicon particles, Jap. J. Appl. Рhуs. (27) (11) (1988) L2207–L2209.

DOI: 10.1143/jjap.27.l2207

Google Scholar

[5] A.A. Berezin, Isotopic superlattices and isotopically ordered structures, Solid State Commun. (54) (8) (1988) 819-821.

DOI: 10.1016/0038-1098(88)90512-1

Google Scholar

[6] A.A. Berezin, Three-dimensional isotopic superlattices, J. Chem. Phys. (80) (8) (1984) 1241–1246.

Google Scholar

[7] H.C. Cammarata, K. Bieradzkl, Effects of surface stress on the elastic moduli of thin films and superlattices, Phys. Rev. Lett. (62) (17) (1989) 2005-2006.

DOI: 10.1103/physrevlett.62.2005

Google Scholar

[8] U. Helmersson et al., Growth of single-crystal TiN/VN strained layer superlattices with extremely high mechanical hardness, J. Appl. Phys. (62) (2) (1987) 481-484.

DOI: 10.1063/1.339770

Google Scholar

[9] L.A. Stelmack, Ion-beam asaisted deposition of optical coatings, Uide, couches minces (44) (245) (I989) 45–58.

Google Scholar

[10] V.I. Vereshchagin, M.A. Sergeev, B.S. Semukhin and Y.V. Borodin, Boron nitride with packets of nanotubes for microcomposite ceramics, (41) (11-12) (2000) 440-443.

DOI: 10.1023/a:1011322504412

Google Scholar

[11] Y.V. Borodin, Low-temperature nanodoping of protonated LiNbO3 crystals by univalent ions, Technical Physics 60(1) (2015) 107-111.

DOI: 10.1134/s1063784215010065

Google Scholar

[12] T. Wolf Form birefringence in a GaAs-AlGaAs multiple quantum well optical waveguides, Electron. Lett. (25) (18) (1989) 1221–1223.

Google Scholar

[13] R.V. Galiulin, Crystallographic geometry (3rd ed.), Moscow: Librokom (2009) 136.

Google Scholar

[14] A. A Vlasov, Statistical distribution functions (Ed. 2nd, rev.), Moscow: URSS (2014) 355.

Google Scholar

[15] K. I. Chepizhny New in Mineralogy, Theory of minerals. Materials of the all-Union meeting, Syktyvkar, 19-21 Nov., 1985, L., Science (1988) 42-47.

Google Scholar

[16] V.I. Mikheev, The homology of crystals, L.: Gostoptekhizdat (1961) 208.

Google Scholar

[17] S.V. Rudnev and V.A Ermolaev, On Application of Elliptical Riemannian Geometry to Study of Crystalline Structure," Proc. Geometry, TGU Tomsk State University, Tomsk (25) (1985) 113-121.

Google Scholar

[18] S.V. Rudnev, Application of Elliptic Riemannian Geometry to Problems Crystallography, Computers and mathematics with applications (16) (5–8) (1988) 597-616.

DOI: 10.1016/0898-1221(88)90249-0

Google Scholar

[19] S.V. Rudnev, A.N. Sergeev, V.G. Bamburov and G.P. Shvykin, Geometrical Modeling of Superplastic Constructional Ceramics Structure, Doklady Chemistry ( 341) (4) (1995) 589-501.

Google Scholar

[20] A. Jayaraman, A.A. Ballman, Effect of pressure on the Raman modes in LiNbO3 and LiNaO3,/ J. Appl. Phys. (60) (5) (1986) 1203–1210.

Google Scholar

[21] N.N. Medvdev, Algorithm for three-dimensional Voronoi polyhedra, J. Comput. Physics (67) (1) (1986) 223–229.

Google Scholar

[22] V.V. Lemeshko, V.V. Obukhovsky, I.S. Res, Twinning of crystals and crystal moduli conception, Cryst. Res. and Technol. (23) (7) (1988) 855-862.

DOI: 10.1002/crat.2170230704

Google Scholar

[23] D. Colaitis, W. Coene, S. Amelincky, Structures incommensurable modulles par des defauts dans is transition de phase du bгоnzе de titane Na1-xTi4O3, J. Solid State Chem. (75) (1) (1988)156-174.

DOI: 10.1016/0022-4596(88)90313-1

Google Scholar

[24] J.L Fourguet, M.F. Renou, R. De Pape, La reaction d'ecn- ange topotactique LiNbO3 - HNbO3 on milieu scide, Revue de Chimie minerale, 21(2) (1984) 385–590.

Google Scholar

[25] J. L. Fourquet, M. F. Renou, R. De Pape, H. Théveneau, P. P. Man, O. Luca, and J. Pannetier, HNbO3: Structure and NMR study, Solid State Ioniks (9) (10) 1011-1044.

DOI: 10.1016/0167-2738(83)90123-6

Google Scholar

[26] Yong Yan, Duan Fang, Ju Lin Peng, L.A. Hursill, Electron microscopic and diffraction study of proton-exchanged LNbO3, Ferroelectrics (77) (1) (1988) 91–I00.

DOI: 10.1080/00150198808223230

Google Scholar

[27] S.N. Sutulin, V.I. Vereshchagin and S.V. Rudnev, IR spectroscopy studies of OH-groups in H:LiNbO3, News AS USSR, Ser. Inorganic material 25(10) (1990) 1923-1925.

Google Scholar

[28] B.S. Semukhin, A.N. Sergeev and S.V. Rudnev, Non-Euclidean Interpretation of the Structures of Crystalline Materials, Crystallography Reports (4) (5) (1999) 738-741.

Google Scholar