[1]
D.H. Ridgley, H. Lessoff, J.V. Childress, Effects of lithium and oxygen losses on magnetic and crystallographic properties of spinel lithium ferrite, J. Amer. Ceram. Soc. 53 (1971) 304-311.
DOI: 10.1111/j.1151-2916.1970.tb12113.x
Google Scholar
[2]
V.V. Boldyrev, A.P. Voronin, O.S. Gribkov, E.V. Tkachenko, G.R. Karagedov, B.I. Yakobson, V.L. Auslender, Radiation-thermal synthesis. Current achievement and outlook, J. Solid State Ion. 36 (1989) 1-6.
DOI: 10.1002/chin.199018315
Google Scholar
[3]
V.A. Neronov, A.P. Voronin, M.I. Tatarintseva, T.E. Melekhova, V.L. Auslender, Sintering under a high-power electron beam, J. The Less-Common Metals, 117 (1986) 391-394.
DOI: 10.1016/0022-5088(86)90065-2
Google Scholar
[4]
N.Z. Lyakhov, V.V. Boldyrev, A.P. Voronin, O.S. Gribkov, I.G. Bochkarev, S.V. Rusakov, V.L. Auslender, Electron beam stimulated chemical reaction in solids, J. Therm. Anal. 43 (1995) 21-31.
DOI: 10.1007/bf02635965
Google Scholar
[5]
R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion, Journal of Physics and Chemistry of Solids 107 (2017) 150-161.
DOI: 10.1016/j.jpcs.2017.04.004
Google Scholar
[6]
R.S. Yadav, I. Kuritka, J. Vilcakova, P. Urbanek, M. Machovsky, M. Masar, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method, Journal of Physics and Chemistry of Solids 110 (2017) 87-99.
DOI: 10.1016/j.jpcs.2017.05.029
Google Scholar
[7]
M. Atifa, M.W. Asghara, M. Nadeemb, W. Khalida, Z. Alia, S. Badshah, Synthesis and investigation of structural, magnetic and dielectric properties of zinc substituted cobalt ferrites, Journal of Physics and Chemistry of Solids 123 (2018) 36-42.
DOI: 10.1016/j.jpcs.2018.07.010
Google Scholar
[8]
M.N. Akhtar, M. Saleem, M.A. Khan, Al doped spinel and garnet nanostructured ferrites for microwave frequency C and X- band applications, Journal of Physics and Chemistry of Solids 123 (2018) 260-265.
DOI: 10.1016/j.jpcs.2018.08.007
Google Scholar
[9]
N. Thomas, P.V. Jithin, V.D. Sudheesh, V. Sebastian, Magnetic and dielectric properties of magnesium substituted cobalt ferrite samples synthesized via one step calcination free solution combustion method, Ceramics Int. 43 (2017) 7305-7310.
DOI: 10.1016/j.ceramint.2017.03.031
Google Scholar
[10]
M.P. Reddy, R.A. Shakoor, A.M.A. Mohamed, M. Gupta, Q. Huang, Effect of sintering temperature on the structural and magnetic properties of MgFe2O4 ceramics prepared by spark plasma sintering, Ceramics Int. 42 (2016) 4221-4227.
DOI: 10.1016/j.ceramint.2015.11.097
Google Scholar
[11]
A. Bajorek, C. Berger, M. Dulski, P.Łopadczak, M. Zubko, K. Prusik, M. Wojtyniak, A. Chrobak, F. Grasset, N. Randrianantoandro, Microstructural and magnetic characterization of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles, Journal of Physics and Chemistry of Solids 129 (2019) 1-21.
DOI: 10.1016/j.jpcs.2018.12.045
Google Scholar
[12]
S. Zhang, A. Li, K. Sun, X. Sun, Y. Wang, S. Wang, Effect of multiwalled carbon nanotubes on the thermoelectric properties of Mn-Zn ferrites, Solid State Sciences 72 (2017) 130-133.
DOI: 10.1016/j.solidstatesciences.2017.08.021
Google Scholar
[13]
V.G. Kostishin, V.G. Andreev, V.V. Korovushkin, D.N. Chitanov, N.A. Yudanov, A.T. Morchenko, A.S. Komlev, A.Yu. Adamtsov, A.N. Nikolaev, Preparation of 2000NN ferrite ceramics by a complete and a short radiation-enhanced thermal sintering process, Inorganic Materials 50 (2014) 1317-1323.
DOI: 10.1134/s0020168514110089
Google Scholar
[14]
V.A. Zhuravlev, E.P. Naiden, R.V. Minin, V.I. Itin, V.I. Suslyaev, E.Yu. Korovin, Radiation-thermal synthesis of W-type hexaferrites, IOP Conf. Series: Materials Science and Engineering 81 (2015) 012003.
DOI: 10.1088/1757-899x/81/1/012003
Google Scholar
[15]
U.V. Ancharova, M.A. Mikhailenko, B.P. Tolochko, N.Z. Lyakhov, M.V. Korobeinikov, A.A. Bryazgin, V.V. Bezuglov, E.A. Shtarklev, Synthesis and Staging of the Phase Formation for Strontium Ferrites in Thermal and Radiation Thermal Reactions, IOP Conf. Ser.: Mater. Sci. Eng. 81 (2015) 012122.
DOI: 10.1088/1757-899x/81/1/012122
Google Scholar
[16]
E.N. Lysenko, A.P. Surzhikov, V.A. Vlasov, E.V. Nikolaev, A.V. Malyshev, A.A. Bryazgin, M.V. Korobeynikov, M.A. Mikhailenko, Synthesis of substituted lithium ferrites under the pulsed and continuous electron beam heating, Nuclear Instruments and Methods in Physics Research, B 392 (2017) 1-7.
DOI: 10.1016/j.nimb.2016.11.042
Google Scholar
[17]
A.P. Surzhikov, A.V. Malyshev, E.N. Lysenko, V.A. Vlasov, A.N. Sokolovskiy, Structural, electromagnetic, and dielectric properties of lithium-zinc ferrite ceramics sintered by pulsed electron beam heating, Ceramics Int. 43 (2017) 9778-9782.
DOI: 10.1016/j.ceramint.2017.04.155
Google Scholar
[18]
Surzhikov A.P., Pritulov A.M., Lysenko E.N., Sokolovskii A.N., Vlasov V.A., Vasendina E.A. Influence of solid-phase ferritization method on phase composition of lithium-zinc ferrites with various concentration of zinc, Journal of Thermal Analysis and Calorimetry 109 (2012) 63-67.
DOI: 10.1007/s10973-011-1366-3
Google Scholar
[19]
A.M. Pritulov, A.P. Surzhikov, V.A. Kozhemyakin, Yu.N. Afanasiev, A.P. Voronin, O.S. Gribkov, G.R. Karagedov, Radiation-thermal packing of lithium ferrite compacts, Phys. Stat. Solidi (a) 119 (1990) 417-421.
DOI: 10.1002/pssa.2211190203
Google Scholar
[20]
M.H. Tikkanen, S.A. Makipirti, New phenomenological sintering equation, Int. J. Powder Met. 1 (1985) 15-21.
Google Scholar
[21]
V.A. Ivensen, V.Z. Belen'kii, Mathematical model of non-isothrmal sintering. I. Derivation of the generalized kinetic equation, Soviet Powder Metallurgy and Metal Ceramics 29 (1990) 611-615.
DOI: 10.1007/bf00795089
Google Scholar
[22]
V.L. Auslender, ILU-type electron accelerator for industrial technologies, J. Nuclear Instruments and Methods in Physical research, B 89 (1994) 46-48.
DOI: 10.1016/0168-583x(94)95143-8
Google Scholar
[23]
L.M. Letyuk, V.A. Nifontov, E.A. Babich, S.S. Gorelik, Effect of low-melting additives on the formation of the microstructure and the properties of ferrites with a rectangular hysteresis loop, Izv Akad Nauk Neorg. Mater. 12 (1976) 2023-2026.
Google Scholar
[24]
G.I. Zhuravlev, L.A. Golubkov, T.A. Strakhova, Basic types of microstructure of ferrites and means of obtaining them, Soviet Powder Metallurgy and Metal Ceramics 29 (1990) 478-482.
DOI: 10.1007/bf00795348
Google Scholar
[25]
G.I. Zhuravlev, T.A. Strakhova, TV-microscopic method of checking the grain-size distribution of ferrite powders, Soviet Powder Metallurgy and Metal Ceramics 27 (1988) 252-254.
DOI: 10.1007/bf00802604
Google Scholar
[26]
E.Ph. Pevtsov, T.A. Demenkova, P.A. Luchnikov, V.V. Vetrova, Analysis of the thermal modes of Focal Plane Arrays, IOP Conference Series: Materials Science and Engineering 168 (2017) 012095.
DOI: 10.1088/1757-899x/168/1/012095
Google Scholar
[27]
P.A. Luchnikov, O.A. Sarkisov, A.A. Rogachev, E.Ph. Pevtsov, T.A. Demenkova, Mechanisms of change of superficial properties of polymeric materials in discharge plasma, IOP Conference Series: Materials Science and Engineering 168 (2017) 012092.
DOI: 10.1088/1757-899x/168/1/012092
Google Scholar