Microstructure Formation of LiTiZn Ferrite Ceramics during Radiation-Thermal Sintering

Article Preview

Abstract:

The effect of intensification of the compaction rate of ferrite compacts under irradiation conditions with a high-power electron beam both in the heating regime and in the isothermal stage of sintering was established. The compaction mechanisms of the compacts are different at each of these stages. The intensification of compaction at the non-isothermal stage in radiation-thermal conditions is due to processes involving the liquid phase. The role of bismuth oxide in the compaction of the material at the isothermal stage of sintering is unessential, but its influence is significant in recrystallization processes. Under of Ivensen’s phenomenology, compaction curves are explained by the deceleration of annealing of structural defects responsible for the fluidity of the material. Dislocations are the most probable type of defects, satisfying the detected regularities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

265-275

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. Ridgley, H. Lessoff, J.V. Childress, Effects of lithium and oxygen losses on magnetic and crystallographic properties of spinel lithium ferrite, J. Amer. Ceram. Soc. 53 (1971) 304-311.

DOI: 10.1111/j.1151-2916.1970.tb12113.x

Google Scholar

[2] V.V. Boldyrev, A.P. Voronin, O.S. Gribkov, E.V. Tkachenko, G.R. Karagedov, B.I. Yakobson, V.L. Auslender, Radiation-thermal synthesis. Current achievement and outlook, J. Solid State Ion. 36 (1989) 1-6.

DOI: 10.1002/chin.199018315

Google Scholar

[3] V.A. Neronov, A.P. Voronin, M.I. Tatarintseva, T.E. Melekhova, V.L. Auslender, Sintering under a high-power electron beam, J. The Less-Common Metals, 117 (1986) 391-394.

DOI: 10.1016/0022-5088(86)90065-2

Google Scholar

[4] N.Z. Lyakhov, V.V. Boldyrev, A.P. Voronin, O.S. Gribkov, I.G. Bochkarev, S.V. Rusakov, V.L. Auslender, Electron beam stimulated chemical reaction in solids, J. Therm. Anal. 43 (1995) 21-31.

DOI: 10.1007/bf02635965

Google Scholar

[5] R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion, Journal of Physics and Chemistry of Solids 107 (2017) 150-161.

DOI: 10.1016/j.jpcs.2017.04.004

Google Scholar

[6] R.S. Yadav, I. Kuritka, J. Vilcakova, P. Urbanek, M. Machovsky, M. Masar, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method, Journal of Physics and Chemistry of Solids 110 (2017) 87-99.

DOI: 10.1016/j.jpcs.2017.05.029

Google Scholar

[7] M. Atifa, M.W. Asghara, M. Nadeemb, W. Khalida, Z. Alia, S. Badshah, Synthesis and investigation of structural, magnetic and dielectric properties of zinc substituted cobalt ferrites, Journal of Physics and Chemistry of Solids 123 (2018) 36-42.

DOI: 10.1016/j.jpcs.2018.07.010

Google Scholar

[8] M.N. Akhtar, M. Saleem, M.A. Khan, Al doped spinel and garnet nanostructured ferrites for microwave frequency C and X- band applications, Journal of Physics and Chemistry of Solids 123 (2018) 260-265.

DOI: 10.1016/j.jpcs.2018.08.007

Google Scholar

[9] N. Thomas, P.V. Jithin, V.D. Sudheesh, V. Sebastian, Magnetic and dielectric properties of magnesium substituted cobalt ferrite samples synthesized via one step calcination free solution combustion method, Ceramics Int. 43 (2017) 7305-7310.

DOI: 10.1016/j.ceramint.2017.03.031

Google Scholar

[10] M.P. Reddy, R.A. Shakoor, A.M.A. Mohamed, M. Gupta, Q. Huang, Effect of sintering temperature on the structural and magnetic properties of MgFe2O4 ceramics prepared by spark plasma sintering, Ceramics Int. 42 (2016) 4221-4227.

DOI: 10.1016/j.ceramint.2015.11.097

Google Scholar

[11] A. Bajorek, C. Berger, M. Dulski, P.Łopadczak, M. Zubko, K. Prusik, M. Wojtyniak, A. Chrobak, F. Grasset, N. Randrianantoandro, Microstructural and magnetic characterization of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles, Journal of Physics and Chemistry of Solids 129 (2019) 1-21.

DOI: 10.1016/j.jpcs.2018.12.045

Google Scholar

[12] S. Zhang, A. Li, K. Sun, X. Sun, Y. Wang, S. Wang, Effect of multiwalled carbon nanotubes on the thermoelectric properties of Mn-Zn ferrites, Solid State Sciences 72 (2017) 130-133.

DOI: 10.1016/j.solidstatesciences.2017.08.021

Google Scholar

[13] V.G. Kostishin, V.G. Andreev, V.V. Korovushkin, D.N. Chitanov, N.A. Yudanov, A.T. Morchenko, A.S. Komlev, A.Yu. Adamtsov, A.N. Nikolaev, Preparation of 2000NN ferrite ceramics by a complete and a short radiation-enhanced thermal sintering process, Inorganic Materials 50 (2014) 1317-1323.

DOI: 10.1134/s0020168514110089

Google Scholar

[14] V.A. Zhuravlev, E.P. Naiden, R.V. Minin, V.I. Itin, V.I. Suslyaev, E.Yu. Korovin, Radiation-thermal synthesis of W-type hexaferrites, IOP Conf. Series: Materials Science and Engineering 81 (2015) 012003.

DOI: 10.1088/1757-899x/81/1/012003

Google Scholar

[15] U.V. Ancharova, M.A. Mikhailenko, B.P. Tolochko, N.Z. Lyakhov, M.V. Korobeinikov, A.A. Bryazgin, V.V. Bezuglov, E.A. Shtarklev, Synthesis and Staging of the Phase Formation for Strontium Ferrites in Thermal and Radiation Thermal Reactions, IOP Conf. Ser.: Mater. Sci. Eng. 81 (2015) 012122.

DOI: 10.1088/1757-899x/81/1/012122

Google Scholar

[16] E.N. Lysenko, A.P. Surzhikov, V.A. Vlasov, E.V. Nikolaev, A.V. Malyshev, A.A. Bryazgin, M.V. Korobeynikov, M.A. Mikhailenko, Synthesis of substituted lithium ferrites under the pulsed and continuous electron beam heating, Nuclear Instruments and Methods in Physics Research, B 392 (2017) 1-7.

DOI: 10.1016/j.nimb.2016.11.042

Google Scholar

[17] A.P. Surzhikov, A.V. Malyshev, E.N. Lysenko, V.A. Vlasov, A.N. Sokolovskiy, Structural, electromagnetic, and dielectric properties of lithium-zinc ferrite ceramics sintered by pulsed electron beam heating, Ceramics Int. 43 (2017) 9778-9782.

DOI: 10.1016/j.ceramint.2017.04.155

Google Scholar

[18] Surzhikov A.P., Pritulov A.M., Lysenko E.N., Sokolovskii A.N., Vlasov V.A., Vasendina E.A. Influence of solid-phase ferritization method on phase composition of lithium-zinc ferrites with various concentration of zinc, Journal of Thermal Analysis and Calorimetry 109 (2012) 63-67.

DOI: 10.1007/s10973-011-1366-3

Google Scholar

[19] A.M. Pritulov, A.P. Surzhikov, V.A. Kozhemyakin, Yu.N. Afanasiev, A.P. Voronin, O.S. Gribkov, G.R. Karagedov, Radiation-thermal packing of lithium ferrite compacts, Phys. Stat. Solidi (a) 119 (1990) 417-421.

DOI: 10.1002/pssa.2211190203

Google Scholar

[20] M.H. Tikkanen, S.A. Makipirti, New phenomenological sintering equation, Int. J. Powder Met. 1 (1985) 15-21.

Google Scholar

[21] V.A. Ivensen, V.Z. Belen'kii, Mathematical model of non-isothrmal sintering. I. Derivation of the generalized kinetic equation, Soviet Powder Metallurgy and Metal Ceramics 29 (1990) 611-615.

DOI: 10.1007/bf00795089

Google Scholar

[22] V.L. Auslender, ILU-type electron accelerator for industrial technologies, J. Nuclear Instruments and Methods in Physical research, B 89 (1994) 46-48.

DOI: 10.1016/0168-583x(94)95143-8

Google Scholar

[23] L.M. Letyuk, V.A. Nifontov, E.A. Babich, S.S. Gorelik, Effect of low-melting additives on the formation of the microstructure and the properties of ferrites with a rectangular hysteresis loop, Izv Akad Nauk Neorg. Mater. 12 (1976) 2023-2026.

Google Scholar

[24] G.I. Zhuravlev, L.A. Golubkov, T.A. Strakhova, Basic types of microstructure of ferrites and means of obtaining them, Soviet Powder Metallurgy and Metal Ceramics 29 (1990) 478-482.

DOI: 10.1007/bf00795348

Google Scholar

[25] G.I. Zhuravlev, T.A. Strakhova, TV-microscopic method of checking the grain-size distribution of ferrite powders, Soviet Powder Metallurgy and Metal Ceramics 27 (1988) 252-254.

DOI: 10.1007/bf00802604

Google Scholar

[26] E.Ph. Pevtsov, T.A. Demenkova, P.A. Luchnikov, V.V. Vetrova, Analysis of the thermal modes of Focal Plane Arrays, IOP Conference Series: Materials Science and Engineering 168 (2017) 012095.

DOI: 10.1088/1757-899x/168/1/012095

Google Scholar

[27] P.A. Luchnikov, O.A. Sarkisov, A.A. Rogachev, E.Ph. Pevtsov, T.A. Demenkova, Mechanisms of change of superficial properties of polymeric materials in discharge plasma, IOP Conference Series: Materials Science and Engineering 168 (2017) 012092.

DOI: 10.1088/1757-899x/168/1/012092

Google Scholar