[1]
H. Kibar, T. Öztürk, Determination of concrete quality with destructive and non-destructive methods, Computers and Concrete 15 (2015) 473-484.
DOI: 10.12989/cac.2015.15.3.473
Google Scholar
[2]
M. Jedidi, M. Kaouther, Destructive and non-destructive testing of concrete structures, Jordan J. Civ. Eng. 8 (2014) 432-441.
Google Scholar
[3]
B.S.K. Reddy, S.P. Wanjari, A partially destructive method for testing In-situ strength of concrete, IOP Conf. Ser.: Mater. Sci. Eng. 289 (2018) 012042.
DOI: 10.1088/1757-899x/431/5/052012
Google Scholar
[4]
J. Helal, M. Sofi, P. Mendis Non-destructive testing of concrete: A review of methods, Special Issue of the Electronic Journal of Structural Engineering 14 (2015) 97-105.
DOI: 10.56748/ejse.141931
Google Scholar
[5]
S.K.U. Rehman, Z. Ibrahim, S.A. Memon, M. Jameel Nondestructive test methods for concrete bridges: a review, Constr. Build. Mater. 107 (2016) 58-86.
DOI: 10.1016/j.conbuildmat.2015.12.011
Google Scholar
[6]
D.G. Aggelis, D.V. Soulioti, N. Sapouridis, N.M. Barkoula, A.S. Paipetis, T.E. Matikas Acoustic emission characterization of the fracture process in fibre reinforced concrete, Constr. Build. Mater. 25 (2011) 4126-4131.
DOI: 10.1016/j.conbuildmat.2011.04.049
Google Scholar
[7]
M.U. Hanif, Z. Ibrahim, M. Jameel, K. Ghaedi, M. Aslam, A new approach to estimate damage in concrete beams using non-linearity, Constr. Build. Mater. 124 (2016) 1081-1089.
DOI: 10.1016/j.conbuildmat.2016.08.139
Google Scholar
[8]
J. Pushpakumara, S. De Silva, S. De Silva, Visual inspection and non-destructive tests-based rating method for concrete bridges, Int. J. Struct. Eng. 8 (2017) 74-91.
DOI: 10.1504/ijstructe.2017.081672
Google Scholar
[9]
A. Du Plessis, W.P. Boshoff, A review of X-ray computed tomography of concrete and asphalt construction materials, Constr. Build. Mater. 199 (2019) 637-651.
DOI: 10.1016/j.conbuildmat.2018.12.049
Google Scholar
[10]
J.H.A. Rocha, Y.V. Póvoas, Infrared thermography as a non-destructive test for the inspection of reinforced concrete bridges: A review oft he state oft he art, REVISTA ALCONPAT. 7 (2017) 200-214.
Google Scholar
[11]
M. Brigante, M.A. Sumbatyan, Acoustic methods fort he nondestructive testing of concrete: A review of foreign publications in the experimental field, Russ. J. Nondestruct. Test. 49 (2013) 185-195.
DOI: 10.1134/s1061830913040037
Google Scholar
[12]
T.V. Fursa, K.Yu. Osipov, D.D. Dann, Development of a Nondestructive Method for Testing the Strength of Concrete with a Faulted Structure Based on the Phenomenon of Mechanoelectric Transformations, Russ. J. Nondestr. Test. 47 (2011) 323-328.
DOI: 10.1134/s1061830911050044
Google Scholar
[13]
T.V. Fursa, G.E. Utsyn, I.N. Korzenok, M.V. Petrov, Yu.A. Reutov, Using electric response to mechanical impact for evaluating the durability of the GFRP-concrete bond during the freeze-thaw process, Compos. Part B-Eng. 90 (2016) 392-398.
DOI: 10.1016/j.compositesb.2015.11.026
Google Scholar
[14]
A.P. Surzhikov, T.S. Frangylyan, S.A. Ghyngazov, A dilatometric study of the effect of pressing on the kinetics of compression of ultrafine zirconium doxide powders under thermal annealing, Russian Physics Journal 55(4) (2012) 345-352,.
DOI: 10.1007/s11182-012-9818-1
Google Scholar
[15]
A. Quiviger, C. Payan, J.-F. Chaix, V. Garnier, J. Salin, Effect of the presence and size of a real macro-crack on diffuse ultrasound in concrete, NDT & E International 45 (2012) 128-132.
DOI: 10.1016/j.ndteint.2011.09.010
Google Scholar