Water Absorption Effect on the Propagation Velocity of Normal Waves in Composite Rebars

Article Preview

Abstract:

The article proposes the use of the acoustic waveguide method with normal Pochhammer waves to estimate the water absorption of composite fiberglass rebars. The results of experimental studies on the water absorption and temperature influence on the propagation velocity of rod and torsional waves in composite rebars samples with different physical and mechanical characteristics are presented. The sensitivity of the wave velocity parameter to water absorption and temperature fluctuations is estimated. The proposed acoustic waveguide method is characterized by high accuracy, reliability and efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-209

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Lizaranzu, A. Lario, A. Chiminelli, I. Amenabar, Non-destructive testing of composite materials by means of active thermography-based tools, Infrared Physics and Technology 71 (2015) 113-120.

DOI: 10.1016/j.infrared.2015.02.006

Google Scholar

[2] V. P. Vavilov, D. D. Burleigh, Review of pulsed thermal NDT: Physical principles, theory and data processing, NDT&E International 73 (2015) 28-52.

DOI: 10.1016/j.ndteint.2015.03.003

Google Scholar

[3] S. S. Pawar, V. P. Vavilov, Applying the heat conduction-based 3D normalization and thermal tomography to pulsed infrared thermography for defect characterization in composite materials. International Journal of Heat and Mass Transfer 94 (2016) 56-65.

DOI: 10.1016/j.ijheatmasstransfer.2015.11.018

Google Scholar

[4] V. P. Vavilov, S. S. Pawar, A novel approach for one-sided thermal nondestructive testing of composites by using infrared thermography, Polymer Testing 44 (2015) 224-233.

DOI: 10.1016/j.polymertesting.2015.04.013

Google Scholar

[5] D. Palumbo, F. Ancona, U. Galietti, Quantitative damage evaluation of composite materials with microwave thermographic technique: feasibility and new data analysis, Meccanica 50 (2015) 443-459.

DOI: 10.1007/s11012-014-9981-2

Google Scholar

[6] K. Zheng, Y. S. Chang, K. H. Wang, Y. Yao, Improved non-destructive testing of carbon fiber reinforced polymer (CFRP) composites using pulsed thermograph, Polymer Testing 46 (2015) 26-32.

DOI: 10.1016/j.polymertesting.2015.06.016

Google Scholar

[7] C. Meola, S. Boccardi, G. M. Carlomagno, N. D. Boffa, F. Ricci, G. Simeoli, P. Russo, Impact damaging of composites through online monitoring and non-destructive evaluation with infrared thermography, NDT & E International 85 (2017) 34-42.

DOI: 10.1016/j.ndteint.2016.10.004

Google Scholar

[8] A. M. Rique, A. C. Machado, D. F. Oliveira, R. T. Lopes, I. Lima, X-ray imaging inspection of fiberglass reinforced by epoxy composite, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 349 (2015) 184-191.

DOI: 10.1016/j.nimb.2015.03.003

Google Scholar

[9] V.V. Murashov, M.V. Slyusarev, Revealing cracks in polymer-composite parts and in multilayered glued constructions by a low-frequency acoustic method, Russian Journal of Non-Destructive Testing 6 (2016) 27-34.

DOI: 10.1134/s1061830916060061

Google Scholar

[10] B. Yang, F. Z. Xuan, S. Chen, S. Zhou, Y. Gao, B. Xiao. Damage localization and identification in WGF/Epoxy composite laminates by using Lamb waves: Experiment and simulation, Composite Structures 165 (2017) 138-147.

DOI: 10.1016/j.compstruct.2017.01.015

Google Scholar

[11] A.I. Potapov, V.E. Makhov, Method for Nondestructive Testing and Diagnostics of Durability of Articles Made of Polymer Composite Materials, Russian Journal of Non-Destructive Testing 3 (2018) 7-19.

DOI: 10.1134/s1061830918030087

Google Scholar

[12] I. Solodov, M. Rahammer, M. Kreutzbruck. Analytical evaluation of resonance frequencies for planar defects: Effect of a defect shape, NDT & E International 102 (2019) 274-280.

DOI: 10.1016/j.ndteint.2018.12.008

Google Scholar

[13] X. Zhang, X. Wu, Y. He, S. Yang, S. Chen, S. Zhang, D. Zhou. CFRP barely visible impact damage inspection based on an ultrasound wave distortion indicator. Composites Part B: Engineering. 168 (2019) 152-158.

DOI: 10.1016/j.compositesb.2018.12.092

Google Scholar

[14] A.A. Karabutov, N.B. Podymova, Quantitative analysis of the influence of voids and delaminations on acoustic attenuation in CFRP composites by the laser-ultrasonic spectroscopy method, Composites Part B: Engineering, 56 (2014) 238-244.

DOI: 10.1016/j.compositesb.2013.08.040

Google Scholar

[15] F. Khatyri, B. Alkihel, F. Delaunois, Non-Destructive Testing by Ultrasonic and Thermal Techniques of an Impacted Composite Material, International Journal on Advanced Science, Engineering and Information Technology 8 (2018).

DOI: 10.18517/ijaseit.8.6.5230

Google Scholar

[16] A. Prabhakar, B. Sturzu, K.  Hollstein, R. Singh, S. Thomas, P. Foote, A. Shaw, Review of Non-destructive Testing (NDT) Techniques and their Applicability to Thick Walled Composites, Procedia CIRP 38 (2015) 129-136.

DOI: 10.1016/j.procir.2015.07.043

Google Scholar

[17] V. Pagliarulo, A. Rocco, A. Langella, A. Riccio, P. Ferraro, V. Antonucci, M. R. Ricciardi, C. Toscano, V. Lopresto, Impact damage investigation on composite laminates: comparison among different NDT methods and numerical simulation, Measurement Science and Technology 26 (2015).

DOI: 10.1088/0957-0233/26/8/085603

Google Scholar

[18] A. A. Hassen, H. Taheri, U. K. Vaidya, Non-destructive investigation of thermoplastic reinforced composites, Composites Part B: Engineering 97 (2016) 244-254.

DOI: 10.1016/j.compositesb.2016.05.006

Google Scholar

[19] O.V. Muravieva,  V.A. Strizhak, D.V. Zlobin, S.A. Murashov, A.V. Pryakhin, Yu.V. Myshkin, Acoustic guided wave testing of downhole pumping equipment elements, Oil Industry 9 (2016) 110-115.

Google Scholar

[20] O.V. Murav'eva, V.A. Strizhak, A.V. Pryakhin, The Effect of Regular Differences in a Cross Section on the Testability of a Rod Tested by the Acoustic Waveguide Method, Russian Journal of Nondestructive testing 50(4) (2014) 219-226.

DOI: 10.1134/s1061830914040068

Google Scholar

[21] O.V. Murav'eva, S.V. Len'kov, S.A. Murashov, Torsional Waves Excited by Electromagnetic–Acoustic Transducers during Guided-Wave Acoustic Inspection of Pipelines, Acoustical Physics 62(1) (2016) 117–124.

DOI: 10.1134/s1063771015060093

Google Scholar