[1]
A.L. Ribeiro, H.G. Ramos, J.C. Arez. Liftoff insensitive thickness measurement of aluminum plates using harmonic eddy current excitation and a GMR sensor. Measurement 45(9) (2012) 2246-2253.
DOI: 10.1016/j.measurement.2012.04.025
Google Scholar
[2]
M.A. Dalin, D.S. Lozhkova, D.N. Smirnov. Measurement of the thickness of U-30MES-5NT and VGM-L sealing compound layers in aircraft products using the ultrasonic nondestructive testing method. Polymer Science - Series D 5(4) (2012) 305-308.
DOI: 10.1134/s1995421212040053
Google Scholar
[3]
J. Grove, K. Jones, D. Ye, J.M. Gudimettla. Nondestructive tests of thickness measurements for concrete pavements. Transportation Research Record 2268 (2012) 61-67.
DOI: 10.3141/2268-08
Google Scholar
[4]
B.T. Budai, N.V. Kasatkin. Determination of hot rolled sheet parameters under the action of destabilizing factors. J. Eng. Phys. & Thermophysics 87(5) (2014) 1274-1278.
DOI: 10.1007/s10891-014-1130-1
Google Scholar
[5]
W.K. Kim, Y.W. Lee, M.S. Cho, J.Y. Park, S.W. Ra, J.B. Park. Nondestructive measurement of the coating thickness for simulated TRISO-coated fuel particles by using phase contrast X-ray radiography. Nucl. Eng. & Design 238(12) (2008) 3285-3291.
DOI: 10.1016/j.nucengdes.2008.07.009
Google Scholar
[6]
C. Mincong, L. Hongmei, C. Ziyu, S. Ji. An examination of mass thickness measurements with X-ray sources. Appl. Rad. & Isotopes 66(10) (2008) 1387-1391.
DOI: 10.1016/j.apradiso.2008.04.012
Google Scholar
[7]
M. Rakvin, D. Markučič, B. Hižman. Evaluation of Pipe Wall thickness based on contrast measurement using computed radiography (CR). Procedia Engineering 69 (2014) 1216-1224.
DOI: 10.1016/j.proeng.2014.03.112
Google Scholar
[8]
F.-Q. Gao, Y.-F. Chen, K. An, Q. Zhou. Research of a correction method of thickness measurement based on X-ray. Hedianzixue Yu Tance Jishu / Nuclear Electronics and Detection Technology 33(5) (2013) 621-623,646.
Google Scholar
[9]
B.V. Artem'ev, A.I. Maslov, V.N. Potapov, M.B. Vedernikov. Use of X-ray thickness gauges in manufacturing rolled non-ferrous metals. Rus. J. NDT 39(6) (2003) 459-464.
DOI: 10.1023/b:runt.0000011627.14800.cb
Google Scholar
[10]
A.J. Rockmore, A. Macovski. A maximum likelihood approach to emission image reconstruction from projections. Nucl. Science, IEEE Transactions 23(4) (1976) 1428-1432.
DOI: 10.1109/tns.1976.4328496
Google Scholar
[11]
S. Osipov, E. Libin, S. Chakhlov, O. Osipov, A. Shtein. Parameter identification method for dual-energy X-ray imaging./ NDT&E Int. 76 (2015) 38-42.
DOI: 10.1016/j.ndteint.2015.08.003
Google Scholar
[12]
B.J. Pease, G.A. Scheffler, H. Janssen. Monitoring moisture movements in building materials using X-ray attenuation: Influence of beam-hardening of polychromatic X-ray photon beams. Construction and Building Materials 36 (2012) 419-429.
DOI: 10.1016/j.conbuildmat.2012.04.126
Google Scholar
[13]
F.M. Zav'yalkin, S.P. Osipov. Dependence of the mean value and fluctuations of the absorbed energy on the scintillator dimensions. Atomic Energy 59(4) (1985) 842-846.
DOI: 10.1007/bf01123317
Google Scholar
[14]
D.C. Copley, J.W. Eberhard, G.A. Mohr. Computed tomography part I: Introduction and industrial applications. JOM 46(1) (1994) 14-26.
DOI: 10.1007/bf03222531
Google Scholar
[15]
G.G. Poludniowski. Calculation of x-ray spectra emerging from an x-ray tube. Part II. X-ray production and filtration in x-ray targets. Med. Physics 34(6) (2007) 2175-2186.
DOI: 10.1118/1.2734726
Google Scholar
[16]
Information on https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html.
Google Scholar