[1]
H. Biederman, Plasma Polymer Films, London: Imp. Col. Press, (2004).
Google Scholar
[2]
H. Yasuda, Plasma polymerization, New York: Academic Press, (1985).
Google Scholar
[3]
J. Friedrich, Mechanisms of Plasma Polymerization – Reviewed from a Chemical Point of View, Plasma Proc. and Polym. 8(9) (2011) 783-802.
DOI: 10.1002/ppap.201100038
Google Scholar
[4]
K.P. Gritsenko, A.M. Krasovsky, Thin-film deposition of polymers by vacuum degradation, Chem. Rev. 103(9) (2003) 3607-3649.
DOI: 10.1021/cr010449q
Google Scholar
[5]
A.A. Rogachev, Morphological features of the first growth steps of polymeric coatings from the active gas phase on the activated, Russ. J. of App. Chem. 77(2) (2004) 281-284.
DOI: 10.1023/b:rjac.0000030367.63884.89
Google Scholar
[6]
N. Olichwer, A. Meyer, M. Yesilmen and T. Vossmeyer, Gold nanoparticle superlattices: correlating chemiresistive responses with analyte sorption and swelling, Mater. Chem. C. 4 (2016) 8214-8225.
DOI: 10.1039/c6tc02412b
Google Scholar
[7]
L-H. J. Lee, Roles of molecular interactions in adhesion, adsorption, contact angle and wettability, Adhesion Sci. Technol. 7(6) (1993) 583-634.
DOI: 10.1163/156856193x00871
Google Scholar
[8]
J. Hoshen, R. Kopelman, Percolation and cluster distribution, Phys. Rev. B14 (1976) 3488-3498.
Google Scholar
[9]
J. Feder, Fractals; Plenum Press: New York, (1988).
Google Scholar
[10]
L.I. Kravets, M.A. Yarmolenko, A.A. Rogachev, R.V. Gainutdinov, V.A. Altynov, N.E. Lizunov, Deposition of double-layer coatings for preparing composite membranes with superhydrophobic properties, High Temp. Mater. Proc. 23(1) (2019) 77-96.
DOI: 10.1615/hightempmatproc.2019030269
Google Scholar
[11]
Y. Zhang, T. Katoh, A. Endo, Changing Molecular Orientation in Fluorocarbon Thin Films Deposited by Different Photo-Processing: Synchrotron Radiation Etching vs Laser Ablation, J. Phys. Chem. B. 104 (2000) 6212-6217.
DOI: 10.1021/jp993481l
Google Scholar
[12]
Ostrikov K., Neyts E.C., Meyyappan M. Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids, Adv. in Phys. 62 (2013) 113-224.
DOI: 10.1080/00018732.2013.808047
Google Scholar
[13]
V. Chandra, S.S. Manoharan, Pulsed electron beam deposition of highly oriented thin films of polytetrafluoroethylene, App. Surf. Sci. 254 (2008) 4063-4066.
DOI: 10.1016/j.apsusc.2007.12.045
Google Scholar
[14]
R. Henda, G. Wilson, J. Gray-Munro, O. Alshekhli, A.M. McDonald, Preparation of polytetrafluoroethylene by pulsed electron ablation: Deposition and wettability aspects, Thin Sol. Films 520(6) (2012) 1885-1889.
DOI: 10.1016/j.tsf.2011.09.035
Google Scholar
[15]
T. Králík, J. Bemš, O. Starý, Electricity markets integrations - What is the current status and future outlook of bidding zones reconfiguration?, Proceedings of the 9th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA, 2017, pp.237-240.
Google Scholar
[16]
A.P. Surzhikov, E.N. Lysenko, A.V. Malyshev, V.A. Vlasov, V.I. Suslyaev, V.A Zhuravlev, E.Y. Korovin, O.A. Dotsenko, Study of the Radio-Wave Absorbing Properties of a Lithium-Zinc Ferrite Based Composite, Russian Physics Journal 57(5) (2014) 621-626,.
DOI: 10.1007/s11182-014-0284-9
Google Scholar
[17]
A.P. Surzhikov, V.V. Peshev, A.M. Pritulov, S.A. Gyngazov, Grain-boundary diffusion of oxygen in polycrystalline ferrites, Russian Physics Journal 42(5) (1999) 490-495,.
DOI: 10.1007/bf02508222
Google Scholar
[18]
A.P. Surzhikov, T.S. Frangulyan, S.A. Ghyngazov, E.N. Lysenko, Investigation of oxidation processes in non-stoichiometric lithium-titanium ferrites using TG analysis, Journal of Thermal Analysis and Calorimetry 102(3) (2010) 883-887,.
DOI: 10.1007/s10973-010-0912-8
Google Scholar