[1]
Y. Yan, Y. Lan, A. de Keizer, Redox responsive molecular assemblies based on metallic coordination polymers, Soft matter 6(14) (2010) 3244-3248.
DOI: 10.1039/b927331j
Google Scholar
[2]
T. Yasuda, W.C. Chen, T. Kato, Special Issue: Photo- and Electro-Functional Polymers and Molecular Assemblies, Polymer journal 49(1) (2017) 1-1.
DOI: 10.1038/pj.2016.111
Google Scholar
[3]
C. Vidya, Priya A. Hoskeri, C.M. Joseph, Structural and Optical Properties of Vacuum Coated and Annealed Copper Phthalocyanine (CUPC) Thin Films, 4th International Conference on Materials Processing and Characterzation (ICMPC) Location: Gokaraju Rangaraju Inst Engin & Technol, Hyderabad, India, 2, 4-5, Mar 14, 2015, pp.1770-1775.
DOI: 10.1016/j.matpr.2015.07.019
Google Scholar
[4]
P. Keeratithiwakorn, P. Songkeaw, K. Onlaor & B. Tunhoo, Structural properties of copper phthalocyanine films grown by electrophoretic deposition process. Materials Today: Proceedings 4 (2017) 6194–6199.
DOI: 10.1016/j.matpr.2017.06.115
Google Scholar
[5]
T. Zou, X. Wang, H. Ju, L. Zhao, T. Guo, W. Wu, H. Wang, Controllable molecular packing motif and overlap type in organic nanomaterials for advanced optical properties, Crystals 8(1), 22 (2018) 1-12.
DOI: 10.3390/cryst8010022
Google Scholar
[6]
S. Tiwari, N.C. Greenham, Charge mobility measurement techniques in organic semiconductors Optical and Quantum Electronics 41(2) (2009) 69-89.
DOI: 10.1007/s11082-009-9323-0
Google Scholar
[7]
L. Yan, Y. Wu, Zh. Xu, B. Hu, Positive and negative magnetic field effects in organic semiconducting materials. Syntetic Metals 159(21-22) 2323-2325.
DOI: 10.1016/j.synthmet.2009.10.007
Google Scholar
[8]
I.V. Plotnikova, N.V. Chicherina, A. B. Stepanov Mathematic modeling of the method of measurement relative dielectric permeability, IOP Conference Series: Materials Science and Engineering 363(1) (2018) 012006, https://doi.org/10.1088/1757-899X/363/1/012006.
DOI: 10.1088/1757-899x/363/1/012006
Google Scholar
[9]
A.I. Nizhegorodov, A.N. Gavrilin, B.B. Moyzes, Application and production technology of thermal activation products of serpentine minerals from industrial wastes, Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering 329(5) (2018) 67-75.
Google Scholar
[10]
C. Lixiang, L. Yanlian, Z. Qiaoming, X. Zuhong, Negative magnetoconductance effects in amorphous copper phthalocyanine thin film: trap-assisted bipolaron formation, J. Mater. Chem. 3 (2015) 1-6.
DOI: 10.1039/c5tc01908g
Google Scholar
[11]
P. Janssen, M.Cox, S.H.W. Wouters, M. Kemerink, M.M. Wienk & B. Koopmans, Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways, Nature Communications (2013) 1-8.
DOI: 10.1038/ncomms3286
Google Scholar
[12]
V. Sergeyev et al., Researches of air and fuel rate influence on oxygen level in emissions of new type medium power coal boiler, IOP Conference Series: Materials Science and Engineering 457(1) (2018) 0120237, https://doi.org/10.1088/1757-899X/457/1/012023.
DOI: 10.1088/1757-899x/457/1/012023
Google Scholar
[13]
T. Zhang, M. Ding, J. Zhao, Space-charge-limited magnetoresistance in organic semiconductors, Physics Letters A 376(1) (2011) 56-58.
DOI: 10.1016/j.physleta.2011.10.035
Google Scholar
[14]
F. Yang, G. Zhang, R.Meng. K. Gao, Sh. Xie, Trap effect of triplet excitons on magnetoresistance in organic devices, Organic Electronics 25 (2015) 12-15, https://doi.org/10.1016/j.orgel.2015.06.016.
DOI: 10.1016/j.orgel.2015.06.016
Google Scholar
[15]
P.A. Bobbert, T.D. Nguyen, F.W.A. van Oost, B. Koopmans, and M. Wohlgenann, Bipolaron Mechanism for Organic Magnetoresistance, PRL 99 (2007) 216801.
DOI: 10.1103/physrevlett.99.216801
Google Scholar