Quantitative Measurement System of Liquid Products in Sealed Tank

Article Preview

Abstract:

Many industries apply pressure tanks for the storage of various types of liquids [1]. It can be toxic, chemically active liquids or food products. Storage conditions of these liquids can have a wide range of pressures and temperatures; therefore it is preferable to control the liquids levels from the outside of the tank. The most optimal solution in this case is the ultrasonic pulse time method [2-6], which is also widely used in robotics [7], fishing, shipping [8-9], archeology [10-11], non-destructive testing [12-17] and manometric method [18].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-74

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Rivera, A. Aduku, O. Harris. Evaluation of LNG Technologies. University of Oklahoma. (2008).

Google Scholar

[2] M. Nakayama, N. Nakasako, T. Uebo, M. Fukushima. Acoustic distance measurement method based on phase interference using the cross-spectral method. Acoust. Sci. & Tech. 34 (2013).

DOI: 10.1250/ast.34.197

Google Scholar

[3] S. Holm. Ultrasound positioning based on time-of-flight and signal strength. IPIN. (2012) 1–6.

Google Scholar

[4] R. Raya, A. Frizera, R. Ceres, L. Calderón, E. Rocon. Design and evaluation of a fast model-based algorithm for ultrasonic range measurements. Sensors Actuators A Phys. 148 (2008) 335–341.

DOI: 10.1016/j.sna.2008.07.001

Google Scholar

[5] B. Barshan. Fast processing techniques for accurate ultrasonic range measurements. Meas. Sci. Technol. 11 (2000) 45–50.

DOI: 10.1088/0957-0233/11/1/307

Google Scholar

[6] D.Sanjeev, Dr A. Sandeep, Dr O.P Sahu. Comparison of Time-Delay Estimation Techniques in Acoustic Environment. International Journal of Computer Applications. V.8 No.9 (2010) 29-31.

Google Scholar

[7] P. Yang, H. Sun, L. Zu. An Acoustic Localization System Using Microphone Array for Mobile Robot. Int. J. Intell. Eng. Syst. 2 (2009) 18–26.

Google Scholar

[8] J. E. Faugstadmo, H. P. Jacobsen. An Integrated acoustic positioning and inertial navigation system. Dynamic positioning conference. (2003).

Google Scholar

[9] Pan-Mook Lee, Bong-Huan Jun, Hyun Taek Choi, Seok-Won Hong. An Integrated Navigation Systems for Underwater Vehicles Based on Inertial Sensors and Pseudo LBL Acoustic Transponders. MTS/IEEE (2005) 1–8.

DOI: 10.1109/oceans.2005.1639813

Google Scholar

[10] R. D. Ballard, , F. T. Hiebert, D. F. Coleman, C. Ward, J. Smith, K. Willis, B. Foley, K. Croff, C. Major, and F. Torre. Deepwater Archaeology of the Black Sea: The 2000 Season at Sinop, Turkey. American Journal of Archaeology Vol. 105 No. 4 (2001) 607-623.

DOI: 10.2307/507409

Google Scholar

[11] D.A. Mindell, B. Bingham. A High-frequency, Narrow-beam Sub-bottom Profiler for Archaeological Applications. MTS/IEEE (2001) 2115–2123.

DOI: 10.1109/oceans.2001.968326

Google Scholar

[12] A. Apartsin, , L. N. Cooper, N. Intrator, Time-of-Flight Estimation in the Presence of Outliers Part I—Single Echo Processing. IEEE Trans. Geosci. Remote Sens. 52 (2014) 3382–3392.

DOI: 10.1109/tgrs.2013.2272737

Google Scholar

[13] M. Spies, K. Salama. Texture of metal-matrix composites by ultrasonic velocity measurements. Res. Nondestruct. Eval. 1 (1989) 99–109.

DOI: 10.1080/09349848908968206

Google Scholar

[14] H. E. Kautz. Detecting lamb waves with broadband acousto-ultrasonic signals in composite structures. Res. Nondestruct. Eval. 4 (1992) 151–164.

DOI: 10.1080/09349849208968062

Google Scholar

[15] L. Mazeika, L. Draudviliene. Analisis of the zero-crossing technique in relation to measurements of phase velocities of the Lamb waves. Ultrasound, V.65 № 2 (2011).

Google Scholar

[16] G. Pierce, W.J. Staszewskit, A. Gachagai, I.R. James, W.R. Philp, K. Wordent, B. Culshaw, A. McNab, G.R. Tomlinsont, G. Haywar. Ultrasonic condition monitoring of composite structures using a low profile acoustic source and an embedded optical fibre sensor. SPIE. 3041 (1997) 437-448.

DOI: 10.1117/12.275667

Google Scholar

[17] W. G. MaMullen, B. A.Delaughe, J. S. Bird. A simple rising-edge detector for time-of-arrival estimation. IEEE Trans. Instrum. Meas. 45 (1996) 823–827.

DOI: 10.1109/19.517003

Google Scholar

[18] M. M. Mordasov, A. P. Savenkov, K. E. Chechetov. A Manometric Method of Measuring the Apparent Density of Granular Materials. Meas. Tech. 58 (2015) 419–425.

DOI: 10.1007/s11018-015-0728-9

Google Scholar

[19] L. Mazeika, V. Samatitis, K. Burnham, K. Makaya. Investigation of the quided wave data analysis capabilities in structural health monitoring og composite objects. Ultrasound, V.66 №3 (2011).

DOI: 10.5755/j01.u.66.3.651

Google Scholar

[20] A. I. Soldatov, J. V. Chiglintseva. Ultrasonic borehole depth-gauge. SIBCON. (2009) 313–317.

Google Scholar

[21] A. I. Soldatov, A. I. Seleznev, A. A. Soldatov, P. V. Sorokin, V. S. Makarov. Estimation of the error when calculating the arrival time of a detected echo-signal. Russ. J. Nondestruct. Test. 48 (2012) 268–271.

DOI: 10.1134/s1061830912050117

Google Scholar

[22] Y. V. Shulgina, A. I. Soldatov, E. M. Shulgin, Y. V. Rozanova, M. Kroning. Mathematical analysis of the echo-impulse position detection by the dual-frequency sensing method. MEACS. (2014) 1–4.

DOI: 10.1109/meacs.2014.6986888

Google Scholar

[23] L. E. Kinsler et al. Fundamentals of acoustics, 4th Ed., John Wiley and sons Inc. (2000).

Google Scholar

[24] Z.-J. Yao, Q.-H. Meng, M. Zeng. Improvement in accuracy of estimating the time-of flight in an ultrasonic randing system using multiple square-root unscented Kalman filters. Review of scientific instruments 81 (2010).

DOI: 10.1063/1.3488057

Google Scholar

[25] A. Moreau, J. B. Ketterson, J. Huang. Three methods for measuring the ultrasonic velocity in thin films. Mater. Sci. Eng. A 126 (1990) 149–154.

DOI: 10.1016/0921-5093(90)90121-i

Google Scholar

[26] Y. V. Shulgina, A. L.Starostin, M. A.Kostina, T. S. Mylnikova, A. I. Soldatov. Simulation of acoustic signals in a waveguide of circular cross section. MEACS. (2015) 1–4.

DOI: 10.1109/meacs.2015.7414918

Google Scholar

[27] E. Sarabia, J. Llata, S. Robla, C. Torre-Ferrero, J. Oria, Accurate Estimation of Airborne Ultrasonic Time-of-Flight for Overlapping Echoes. Sensors 13 (2013) 15465–15488.

DOI: 10.3390/s131115465

Google Scholar

[28] A. I. Soldatov, O. A. Kozhemyak, A. A. Soldatov, Y. V. Shulgina. Measurement error reducing in the ultrasound time-pulse systems. IOP Conf. Ser. Mater. Sci. Eng. 81 (2015).

DOI: 10.1088/1757-899x/81/1/012117

Google Scholar

[29] S. Cong, T. Gang, J. Zhang. Ultrasonic Time-of-Flight Diffraction Testing with Linear Frequency Modulated Excitation for Austenitic Stainless Steel Welds. J. Nondestruct. Eval. 34 (2015) 8.

DOI: 10.1007/s10921-015-0281-0

Google Scholar

[30] B. Barshan. A sonar-based mobile robot for bat-like prey capture. PhD Thesis, Yale University, (1991).

Google Scholar

[31] B. Barshan, R. Kuc. A bat-like sonar system for obstacle localization. IEEE Trans. Syst. Man. Cybern. 22 (1992) 636–646.

DOI: 10.1109/21.156577

Google Scholar

[32] T. B. Bahder. Mathematics for Computer Science. Addison-Wesley, (1995).

Google Scholar

[33] K.F. Riley, M.P. Hobson, S.J. Bence. Mathematical Methods for Physics and Engineering. Third edition. Cambridge, (2006).

Google Scholar

[34] X. Pacheco. Delphi for .NET Developer's Guide. Sams Publishing, (2004).

Google Scholar

[35] M. M. Mordasov, A. P. Savenkov, K. E. Chechetov, A Manometric Method of Measuring the Apparent Density of Granular Materials. Meas. Tech. 58 (2015) 419–425.

DOI: 10.1007/s11018-015-0728-9

Google Scholar