[1]
V. Rivera, A. Aduku, O. Harris. Evaluation of LNG Technologies. University of Oklahoma. (2008).
Google Scholar
[2]
M. Nakayama, N. Nakasako, T. Uebo, M. Fukushima. Acoustic distance measurement method based on phase interference using the cross-spectral method. Acoust. Sci. & Tech. 34 (2013).
DOI: 10.1250/ast.34.197
Google Scholar
[3]
S. Holm. Ultrasound positioning based on time-of-flight and signal strength. IPIN. (2012) 1–6.
Google Scholar
[4]
R. Raya, A. Frizera, R. Ceres, L. Calderón, E. Rocon. Design and evaluation of a fast model-based algorithm for ultrasonic range measurements. Sensors Actuators A Phys. 148 (2008) 335–341.
DOI: 10.1016/j.sna.2008.07.001
Google Scholar
[5]
B. Barshan. Fast processing techniques for accurate ultrasonic range measurements. Meas. Sci. Technol. 11 (2000) 45–50.
DOI: 10.1088/0957-0233/11/1/307
Google Scholar
[6]
D.Sanjeev, Dr A. Sandeep, Dr O.P Sahu. Comparison of Time-Delay Estimation Techniques in Acoustic Environment. International Journal of Computer Applications. V.8 No.9 (2010) 29-31.
Google Scholar
[7]
P. Yang, H. Sun, L. Zu. An Acoustic Localization System Using Microphone Array for Mobile Robot. Int. J. Intell. Eng. Syst. 2 (2009) 18–26.
Google Scholar
[8]
J. E. Faugstadmo, H. P. Jacobsen. An Integrated acoustic positioning and inertial navigation system. Dynamic positioning conference. (2003).
Google Scholar
[9]
Pan-Mook Lee, Bong-Huan Jun, Hyun Taek Choi, Seok-Won Hong. An Integrated Navigation Systems for Underwater Vehicles Based on Inertial Sensors and Pseudo LBL Acoustic Transponders. MTS/IEEE (2005) 1–8.
DOI: 10.1109/oceans.2005.1639813
Google Scholar
[10]
R. D. Ballard, , F. T. Hiebert, D. F. Coleman, C. Ward, J. Smith, K. Willis, B. Foley, K. Croff, C. Major, and F. Torre. Deepwater Archaeology of the Black Sea: The 2000 Season at Sinop, Turkey. American Journal of Archaeology Vol. 105 No. 4 (2001) 607-623.
DOI: 10.2307/507409
Google Scholar
[11]
D.A. Mindell, B. Bingham. A High-frequency, Narrow-beam Sub-bottom Profiler for Archaeological Applications. MTS/IEEE (2001) 2115–2123.
DOI: 10.1109/oceans.2001.968326
Google Scholar
[12]
A. Apartsin, , L. N. Cooper, N. Intrator, Time-of-Flight Estimation in the Presence of Outliers Part I—Single Echo Processing. IEEE Trans. Geosci. Remote Sens. 52 (2014) 3382–3392.
DOI: 10.1109/tgrs.2013.2272737
Google Scholar
[13]
M. Spies, K. Salama. Texture of metal-matrix composites by ultrasonic velocity measurements. Res. Nondestruct. Eval. 1 (1989) 99–109.
DOI: 10.1080/09349848908968206
Google Scholar
[14]
H. E. Kautz. Detecting lamb waves with broadband acousto-ultrasonic signals in composite structures. Res. Nondestruct. Eval. 4 (1992) 151–164.
DOI: 10.1080/09349849208968062
Google Scholar
[15]
L. Mazeika, L. Draudviliene. Analisis of the zero-crossing technique in relation to measurements of phase velocities of the Lamb waves. Ultrasound, V.65 № 2 (2011).
Google Scholar
[16]
G. Pierce, W.J. Staszewskit, A. Gachagai, I.R. James, W.R. Philp, K. Wordent, B. Culshaw, A. McNab, G.R. Tomlinsont, G. Haywar. Ultrasonic condition monitoring of composite structures using a low profile acoustic source and an embedded optical fibre sensor. SPIE. 3041 (1997) 437-448.
DOI: 10.1117/12.275667
Google Scholar
[17]
W. G. MaMullen, B. A.Delaughe, J. S. Bird. A simple rising-edge detector for time-of-arrival estimation. IEEE Trans. Instrum. Meas. 45 (1996) 823–827.
DOI: 10.1109/19.517003
Google Scholar
[18]
M. M. Mordasov, A. P. Savenkov, K. E. Chechetov. A Manometric Method of Measuring the Apparent Density of Granular Materials. Meas. Tech. 58 (2015) 419–425.
DOI: 10.1007/s11018-015-0728-9
Google Scholar
[19]
L. Mazeika, V. Samatitis, K. Burnham, K. Makaya. Investigation of the quided wave data analysis capabilities in structural health monitoring og composite objects. Ultrasound, V.66 №3 (2011).
DOI: 10.5755/j01.u.66.3.651
Google Scholar
[20]
A. I. Soldatov, J. V. Chiglintseva. Ultrasonic borehole depth-gauge. SIBCON. (2009) 313–317.
Google Scholar
[21]
A. I. Soldatov, A. I. Seleznev, A. A. Soldatov, P. V. Sorokin, V. S. Makarov. Estimation of the error when calculating the arrival time of a detected echo-signal. Russ. J. Nondestruct. Test. 48 (2012) 268–271.
DOI: 10.1134/s1061830912050117
Google Scholar
[22]
Y. V. Shulgina, A. I. Soldatov, E. M. Shulgin, Y. V. Rozanova, M. Kroning. Mathematical analysis of the echo-impulse position detection by the dual-frequency sensing method. MEACS. (2014) 1–4.
DOI: 10.1109/meacs.2014.6986888
Google Scholar
[23]
L. E. Kinsler et al. Fundamentals of acoustics, 4th Ed., John Wiley and sons Inc. (2000).
Google Scholar
[24]
Z.-J. Yao, Q.-H. Meng, M. Zeng. Improvement in accuracy of estimating the time-of flight in an ultrasonic randing system using multiple square-root unscented Kalman filters. Review of scientific instruments 81 (2010).
DOI: 10.1063/1.3488057
Google Scholar
[25]
A. Moreau, J. B. Ketterson, J. Huang. Three methods for measuring the ultrasonic velocity in thin films. Mater. Sci. Eng. A 126 (1990) 149–154.
DOI: 10.1016/0921-5093(90)90121-i
Google Scholar
[26]
Y. V. Shulgina, A. L.Starostin, M. A.Kostina, T. S. Mylnikova, A. I. Soldatov. Simulation of acoustic signals in a waveguide of circular cross section. MEACS. (2015) 1–4.
DOI: 10.1109/meacs.2015.7414918
Google Scholar
[27]
E. Sarabia, J. Llata, S. Robla, C. Torre-Ferrero, J. Oria, Accurate Estimation of Airborne Ultrasonic Time-of-Flight for Overlapping Echoes. Sensors 13 (2013) 15465–15488.
DOI: 10.3390/s131115465
Google Scholar
[28]
A. I. Soldatov, O. A. Kozhemyak, A. A. Soldatov, Y. V. Shulgina. Measurement error reducing in the ultrasound time-pulse systems. IOP Conf. Ser. Mater. Sci. Eng. 81 (2015).
DOI: 10.1088/1757-899x/81/1/012117
Google Scholar
[29]
S. Cong, T. Gang, J. Zhang. Ultrasonic Time-of-Flight Diffraction Testing with Linear Frequency Modulated Excitation for Austenitic Stainless Steel Welds. J. Nondestruct. Eval. 34 (2015) 8.
DOI: 10.1007/s10921-015-0281-0
Google Scholar
[30]
B. Barshan. A sonar-based mobile robot for bat-like prey capture. PhD Thesis, Yale University, (1991).
Google Scholar
[31]
B. Barshan, R. Kuc. A bat-like sonar system for obstacle localization. IEEE Trans. Syst. Man. Cybern. 22 (1992) 636–646.
DOI: 10.1109/21.156577
Google Scholar
[32]
T. B. Bahder. Mathematics for Computer Science. Addison-Wesley, (1995).
Google Scholar
[33]
K.F. Riley, M.P. Hobson, S.J. Bence. Mathematical Methods for Physics and Engineering. Third edition. Cambridge, (2006).
Google Scholar
[34]
X. Pacheco. Delphi for .NET Developer's Guide. Sams Publishing, (2004).
Google Scholar
[35]
M. M. Mordasov, A. P. Savenkov, K. E. Chechetov, A Manometric Method of Measuring the Apparent Density of Granular Materials. Meas. Tech. 58 (2015) 419–425.
DOI: 10.1007/s11018-015-0728-9
Google Scholar