[1]
D.G. Aggelis, A.C. Mpalaskas, T.E. Matikas, Investigation of different fracture modes in cement-based materials by acoustic emission, Cem. Concr. Res. 48 (2013) 1-8.
DOI: 10.1016/j.cemconres.2013.02.002
Google Scholar
[2]
P.L. Liu, P.L. Yeh, Spectral tomography of concrete structures based on impact echo depth spectra, NDT and E Int. 44 (2011) 692–702.
DOI: 10.1016/j.ndteint.2010.09.013
Google Scholar
[3]
P. Antonaci, C.L.E. Bruno, A.S. Gliozzi, M. Scalerandi, Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods, Cem. Concr. Res. 40 (2010) 1106–1113.
DOI: 10.1016/j.cemconres.2010.02.017
Google Scholar
[4]
D. Bui, S.A. Kodjo, P. Rivard, B. Fournier, Evaluation of Concrete Distributed Cracks by Ultrasonic Travel Time Shift Under an External Mechanical Perturbation: Study of Indirect and Semi-direct Transmission Configurations, J. Nondest. Eval. 32 (2013) 25–36.
DOI: 10.1007/s10921-012-0155-7
Google Scholar
[5]
T.V. Fursa, A.P. Surzhikov, K.Yu. Osipov, Development of an acoustoelectric method for determining the porosity of dielectric materials, Russian Journal of Nondestructive Testing 43(2) (2007) 95-99,.
DOI: 10.1134/s1061830907020040
Google Scholar
[6]
M.M. Nemirovich-Danchenko, Fizich. Mezomekh 5 (2002) 99-106.
Google Scholar
[7]
C.H. Scholz, Microfracturing and the inelastic deformation of rock in compression, J. Geophys. Res. 73 (1968) 14-17.
DOI: 10.1029/jb073i004p01417
Google Scholar
[8]
R.M. Gol'd, G.P. Markov, P.G. Mogila, Pulsed electromagnetic radiation of minerals and rock subjected to mechanical loading, Izv. Earth Phys. 7 (1975) 109-111.
Google Scholar
[9]
P. Koktavy, Experimental study of electromagnetic emission signals generated by crack generation in composite materials, Meas. Sci. Technol. 20 (2009) 015704.
DOI: 10.1088/0957-0233/20/1/015704
Google Scholar
[10]
G. Lacidogna, A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, A. Agosto, Acoustic and electromagnetic emissions as precursor phenomena in failure processes, Strain 47 (2011) 144-152.
DOI: 10.1111/j.1475-1305.2010.00750.x
Google Scholar
[11]
K. Baddari, A.D. Frolov, V. Tourtchine, F. Rahmoune, S. Makdeche, Effect of stress-strain conditions on physical precursors and failure stages development in rock samples, Acta Geophys. 63 (2015) 62-102.
DOI: 10.2478/s11600-014-0206-9
Google Scholar
[12]
A.A. Bespalko, Y.N. Isaev, L.V. Yavorovich, Transformation of acoustic pulses into electromagnetic response in stratified and damaged structures, J. Min. Sci. 52 (2016) 279-285.
DOI: 10.1134/s1062739116020418
Google Scholar
[13]
A.A. Bespalko, B.A. Lyukshin, G.E. Utsyn, L.V. Yavorovich, Electromagnetic Response of Layered Dielectric Structures to Pulsed Acoustical Action, Russ. Phys. J. 58 (2015) 567-573.
DOI: 10.1007/s11182-015-0535-4
Google Scholar
[14]
T. Králík, J. Bemš, O. Starý, Electricity markets integrations - What is the current status and future outlook of bidding zones reconfiguration? Proceedings of the 9th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA, 2017, pp.237-240.
Google Scholar
[15]
A. Ishimary, S.T. Hong, Radio Sci. 10 (1975) 637.
Google Scholar
[16]
E.Ph. Pevtsov, T.A. Demenkova, P.A. Luchnikov, V.V. Vetrova, Analysis of the thermal modes of Focal Plane Arrays, IOP Conference Series: Materials Science and Engineering 168, (2017) 012095,.
DOI: 10.1088/1757-899x/168/1/012095
Google Scholar
[17]
P.A. Luchnikov, O.A. Sarkisov, A.A. Rogachev, E.Ph. Pevtsov, T.A. Demenkova, Mechanisms of change of superficial properties of polymeric materials in discharge plasma, IOP Conference Series: Materials Science and Engineering 168 (2017) 012092,.
DOI: 10.1088/1757-899x/168/1/012092
Google Scholar