[1]
R. Eliassen, G. Tchobanoglous, Removal of nitrogen and phosphorus from waste water, Environ. Sci. Technol. 3(6) (1969) 536–541.
DOI: 10.1021/es60029a009
Google Scholar
[2]
J. Barnard, Background to biological phosphorus removal, Wat. Sci. Tech. 15(3–4) (1983) 1–13.
Google Scholar
[3]
P. Timmermans, A. van Haute, Denitrification with methanol: Fundamental study of the growth and denitrification capacity of Hyphomicrobium sp., Water Res. 17 (198)3 1249–1255.
DOI: 10.1016/0043-1354(83)90249-x
Google Scholar
[4]
K. S. Le Corre, E. Valsami-Jones, P. Hobbs, S. A. Parsons, Phosphorus recovery from wastewater by struvite crystallization: A review, Crit. Rev. Env. Sci. Tec. 39(6) (2009) 433–477.
DOI: 10.1080/10643380701640573
Google Scholar
[5]
C.M. Mehta, W.O. Khunjar, V. Nguyen, S. Tait, D.J. Batstone, Technologies to recover nutrients from waste streams: A critical review, Crit. Rev. Env. Sci. Tec. 45(4) (2015) 385–427.
DOI: 10.1080/10643389.2013.866621
Google Scholar
[6]
B. Zhang, N. Chen, C. Feng, Z. Zhang, Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe(III) complex sorbents: Characteristic and mechanism, Chem. Eng. J. 353 (2018) 361–372.
DOI: 10.1016/j.cej.2018.07.092
Google Scholar
[7]
T.P. Sciarria, G. Vacca, F. Tambone, L. Trombino, F. Adani, Nutrient recovery and energy production from digestate using microbial electrochemical technologies (METs), J. Clean. Prod. 208 (2019) 1022–1029.
DOI: 10.1016/j.jclepro.2018.10.152
Google Scholar
[8]
D. Breck, Zeolite Molecular Sieves, Wiley, New York, (1974).
Google Scholar
[9]
C. Murphy, O. Hrycyk, W. Gleason, Natural Zeolites: Occurence, Properties, Use. Pergamon, Oxford, (1978).
Google Scholar
[10]
J. Weitkamp, Zeolites and catalysis, Solid State Ionics 131 (2000) 175–188.
DOI: 10.1016/s0167-2738(00)00632-9
Google Scholar
[11]
A. Hedström, Ion exchange of ammonium in zeolites: a literature review, J. Environ. Eng. 127 (2001) 673–681.
DOI: 10.1061/(asce)0733-9372(2001)127:8(673)
Google Scholar
[12]
S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. 97 (2003) 219–243.
DOI: 10.1016/s0304-3894(02)00263-7
Google Scholar
[13]
Y. Zhao, Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater, Environ. Eng. Sci. 33 (2016) 443–454.
DOI: 10.1089/ees.2015.0166
Google Scholar
[14]
M. Vocciante, A.D.F. D'Auris, A. Finocchi, M. Tagliabue, M. Bellettato, A. Ferrucci, A.P. Reverberi, S. Ferro, Adsorption of ammonium on clinoptilolite in presence of competing cations: Investigation on groundwater remediation, J. Clean. Prod. 198 (2018) 480–487.
DOI: 10.1016/j.jclepro.2018.07.025
Google Scholar
[15]
H.-F. Chen, Y.-J. Lin, B.-H. Chen, I. Yoshiyuki, S.Y.-H. Liou, R.-T. Huang, Further investigation of NH4+ removal mechanisms by using natural and synthetic zeolites in different concentrations and temperatures, Minerals 8(11) (2018) 499.
DOI: 10.3390/min8110499
Google Scholar
[16]
S.S. Obaid, D.K. Gaikwad, M.I. Sayyed, K. AL-Rashdi, P.P. Pawar, Heavy metal ions removal from waste water by the natural zeolites, Mater. Today 5 (9) Part 3 (2018) 17930–17934.
DOI: 10.1016/j.matpr.2018.06.122
Google Scholar
[17]
M.R. Adam, M.H.D. Othman, R.A. Samah, M.H. Puteh, A.F. Ismail, A. Mustafa, M.A. Rahman, J. Jaafar, Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development, Sep. Purif. Technol. 213 (2019) 114–132.
DOI: 10.1016/j.seppur.2018.12.030
Google Scholar
[18]
M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan, R. Li, Heavy metal adsorption with zeolites: The role of hierarchical pore architecture, Chem. Eng. J. 359 (2019) 363–372.
DOI: 10.1016/j.cej.2018.11.087
Google Scholar
[19]
G.M. Haggerty, R.S. Bowman, Sorption of inorganic anions by organo-zeolites, Environ. Sci. Technol. 28 (1994) 452–458.
DOI: 10.1021/es00052a017
Google Scholar
[20]
S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (1) (2010) 11–24.
Google Scholar
[21]
C. Diaz-Nava, M.T. Olguin, M. Solache-Rios, Water defluoridation by Mexican heulandite–clinoptilolite, Sep. Sci. Technol. 37 (2002) 3109–3128.
DOI: 10.1081/ss-120005662
Google Scholar
[22]
V. Campos, L.C. Morais, P.M. Buchler, Removal of chromate from aqueous solution using treated natural zeolite, Environ. Geol. 52 (2007) 1521–1525.
DOI: 10.1007/s00254-006-0596-3
Google Scholar
[23]
A.M. Yusof, N.A.N.N. Malek, Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y, J. Hazard. Mater. 162 (2009) 1019–1024.
DOI: 10.1016/j.jhazmat.2008.05.134
Google Scholar
[24]
B. Szala, T. Bajda, A. Jeleń, Removal of chromium(VI) from aqueous solutions using zeolites modified with HDTMA and ODTMA surfactants, Clay Minerals 50(1) (2015) 103–115.
DOI: 10.1180/claymin.2015.050.1.10
Google Scholar
[25]
N. Murayama, S. Yoshida, Y. Takami, H. Yamamoto, J. Shibata, Simultaneous removal of NH4+ and PO43– in aqueous solution and its mechanism by using zeolite synthesized from coal fly ash, Sep. Sci. Technol. 38 (2003) 113–129.
DOI: 10.1081/ss-120016701
Google Scholar
[26]
B. Zhang, D. Wu, C. Wang, S. He, Z. Zhang, H. Kong, Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment, J. Environ. Sci. 19 (2007) 540–545.
DOI: 10.1016/s1001-0742(07)60090-4
Google Scholar
[27]
J. Chen, H. Kong, D. Wu, Z. Hu, Z. Wang, Y. Wang, Removal of phosphate from aqueous solution by zeolite synthesized from fly ash, J. Colloid Interface Sci. 300 (2006) 491–497.
DOI: 10.1016/j.jcis.2006.04.010
Google Scholar
[28]
X.D. Ji, M.L. Zhang, Y.Y. Ke, Y.C. Song, Simultaneous immobilization of ammonium and phosphate from aqueous solution using zeolites synthesized from fly ashes, Water Sci. Technol. 67(6) (2013) 1324–1331.
DOI: 10.2166/wst.2013.690
Google Scholar
[29]
N. Karapınar, Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions, J. Hazard. Mater. 170 (2009) 1186–1191.
DOI: 10.1016/j.jhazmat.2009.05.094
Google Scholar
[30]
Y.L. Sun, J.W. Lin, H. Huang, W.Y. Zhang, D.D. Ma, Simultaneous removal of ammonium and phosphate from aqueous solution by calcium chloride-modified zeolite, Adv. Mater. Research, 356–360 (2012) 1581–1585.
DOI: 10.4028/www.scientific.net/amr.356-360.1581
Google Scholar
[31]
D. Guaya, C. Valderrama, A. Farran, C. Armijos, J.L. Cortina, Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite, Chem. Eng. J. 271 (2015) 204–213.
DOI: 10.1016/j.cej.2015.03.003
Google Scholar
[32]
D. Guaya, C. Valderrama, A. Farran, J.L. Cortina, Modification of a natural zeolite with Fe(III) for simultaneous phosphate and ammonium removal from aqueous solutions, J. Chem. Technol. Biotechnol. 91 (2016) 1737–1746.
DOI: 10.1002/jctb.4763
Google Scholar
[33]
Y. He, H. Lin, Y. Dong, Q. Liu, L. Wang, Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite, Chemosphere 164 (2016) 387–395.
DOI: 10.1016/j.chemosphere.2016.08.110
Google Scholar
[34]
C. Murphy, O. Hrycyk, W. Gleason, Natural Zeolites: Occurence, Properties, Use. Pergamon, Oxford, (1978).
Google Scholar
[35]
G. Gottardi, E. Galli, Natural Zeolites, Springer Verlag, Berlin, (1985).
Google Scholar
[36]
Y. Song, H.H. Hahn, E. Hoffmann, Effects of solution conditions on the precipitation of phosphate for recovery. A thermodynamic evaluation, Chemosphere, 48 (2002) 1029–1034.
DOI: 10.1016/s0045-6535(02)00183-2
Google Scholar
[37]
S.G. Lu, S.Q. Bai, L. Zhu, H.D. Shan, Removal mechanism of phosphate from aqueous solution by fly ash, J. Hazard. Mater. 161 (2009) 95–101.
DOI: 10.1016/j.jhazmat.2008.02.123
Google Scholar
[38]
E. Antunes, M.V. Jacob, G. Brodie, P.A. Schneider, Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis, J. Environ. Chem. Eng. 6 (1) (2018) 395–403.
DOI: 10.1016/j.jece.2017.12.011
Google Scholar