Characterization of Badinsk Zeolite and its Use for Removal of Phosphorus and Nitrogen Compounds from Wastewater

Article Preview

Abstract:

The characterization of natural zeolite from Badinsk deposit was carried out by means of X-ray diffraction, scanning electronic microscopy, thermal analysis, Fourier transform infrared spectroscopy. The possibility of water purification from phosphates in dynamic conditions using of natural zeolite as a filtering bed was studied. The effect of the filtration rate of phosphates solution on purification efficiency is investigated. The mechanism of phosphates and ammonium removal with the participation of the zeolite is discussed: in case of phosphates it is the formation of insoluble compounds by reacting of calcium cations and phosphate anions; in case of ammonium ions it is ion exchange.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-16

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Eliassen, G. Tchobanoglous, Removal of nitrogen and phosphorus from waste water, Environ. Sci. Technol. 3(6) (1969) 536–541.

DOI: 10.1021/es60029a009

Google Scholar

[2] J. Barnard, Background to biological phosphorus removal, Wat. Sci. Tech. 15(3–4) (1983) 1–13.

Google Scholar

[3] P. Timmermans, A. van Haute, Denitrification with methanol: Fundamental study of the growth and denitrification capacity of Hyphomicrobium sp., Water Res. 17 (198)3 1249–1255.

DOI: 10.1016/0043-1354(83)90249-x

Google Scholar

[4] K. S. Le Corre, E. Valsami-Jones, P. Hobbs, S. A. Parsons, Phosphorus recovery from wastewater by struvite crystallization: A review, Crit. Rev. Env. Sci. Tec. 39(6) (2009) 433–477.

DOI: 10.1080/10643380701640573

Google Scholar

[5] C.M. Mehta, W.O. Khunjar, V. Nguyen, S. Tait, D.J. Batstone, Technologies to recover nutrients from waste streams: A critical review, Crit. Rev. Env. Sci. Tec. 45(4) (2015) 385–427.

DOI: 10.1080/10643389.2013.866621

Google Scholar

[6] B. Zhang, N. Chen, C. Feng, Z. Zhang, Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe(III) complex sorbents: Characteristic and mechanism, Chem. Eng. J. 353 (2018) 361–372.

DOI: 10.1016/j.cej.2018.07.092

Google Scholar

[7] T.P. Sciarria, G. Vacca, F. Tambone, L. Trombino, F. Adani, Nutrient recovery and energy production from digestate using microbial electrochemical technologies (METs), J. Clean. Prod. 208 (2019) 1022–1029.

DOI: 10.1016/j.jclepro.2018.10.152

Google Scholar

[8] D. Breck, Zeolite Molecular Sieves, Wiley, New York, (1974).

Google Scholar

[9] C. Murphy, O. Hrycyk, W. Gleason, Natural Zeolites: Occurence, Properties, Use. Pergamon, Oxford, (1978).

Google Scholar

[10] J. Weitkamp, Zeolites and catalysis, Solid State Ionics 131 (2000) 175–188.

DOI: 10.1016/s0167-2738(00)00632-9

Google Scholar

[11] A. Hedström, Ion exchange of ammonium in zeolites: a literature review, J. Environ. Eng. 127 (2001) 673–681.

DOI: 10.1061/(asce)0733-9372(2001)127:8(673)

Google Scholar

[12] S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. 97 (2003) 219–243.

DOI: 10.1016/s0304-3894(02)00263-7

Google Scholar

[13] Y. Zhao, Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater, Environ. Eng. Sci. 33 (2016) 443–454.

DOI: 10.1089/ees.2015.0166

Google Scholar

[14] M. Vocciante, A.D.F. D'Auris, A. Finocchi, M. Tagliabue, M. Bellettato, A. Ferrucci, A.P. Reverberi, S. Ferro, Adsorption of ammonium on clinoptilolite in presence of competing cations: Investigation on groundwater remediation, J. Clean. Prod. 198 (2018) 480–487.

DOI: 10.1016/j.jclepro.2018.07.025

Google Scholar

[15] H.-F. Chen, Y.-J. Lin, B.-H. Chen, I. Yoshiyuki, S.Y.-H. Liou, R.-T. Huang, Further investigation of NH4+ removal mechanisms by using natural and synthetic zeolites in different concentrations and temperatures, Minerals 8(11) (2018) 499.

DOI: 10.3390/min8110499

Google Scholar

[16] S.S. Obaid, D.K. Gaikwad, M.I. Sayyed, K. AL-Rashdi, P.P. Pawar, Heavy metal ions removal from waste water by the natural zeolites, Mater. Today 5 (9) Part 3 (2018) 17930–17934.

DOI: 10.1016/j.matpr.2018.06.122

Google Scholar

[17] M.R. Adam, M.H.D. Othman, R.A. Samah, M.H. Puteh, A.F. Ismail, A. Mustafa, M.A. Rahman, J. Jaafar, Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development, Sep. Purif. Technol. 213 (2019) 114–132.

DOI: 10.1016/j.seppur.2018.12.030

Google Scholar

[18] M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan, R. Li, Heavy metal adsorption with zeolites: The role of hierarchical pore architecture, Chem. Eng. J. 359 (2019) 363–372.

DOI: 10.1016/j.cej.2018.11.087

Google Scholar

[19] G.M. Haggerty, R.S. Bowman, Sorption of inorganic anions by organo-zeolites, Environ. Sci. Technol. 28 (1994) 452–458.

DOI: 10.1021/es00052a017

Google Scholar

[20] S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (1) (2010) 11–24.

Google Scholar

[21] C. Diaz-Nava, M.T. Olguin, M. Solache-Rios, Water defluoridation by Mexican heulandite–clinoptilolite, Sep. Sci. Technol. 37 (2002) 3109–3128.

DOI: 10.1081/ss-120005662

Google Scholar

[22] V. Campos, L.C. Morais, P.M. Buchler, Removal of chromate from aqueous solution using treated natural zeolite, Environ. Geol. 52 (2007) 1521–1525.

DOI: 10.1007/s00254-006-0596-3

Google Scholar

[23] A.M. Yusof, N.A.N.N. Malek, Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y, J. Hazard. Mater. 162 (2009) 1019–1024.

DOI: 10.1016/j.jhazmat.2008.05.134

Google Scholar

[24] B. Szala, T. Bajda, A. Jeleń, Removal of chromium(VI) from aqueous solutions using zeolites modified with HDTMA and ODTMA surfactants, Clay Minerals 50(1) (2015) 103–115.

DOI: 10.1180/claymin.2015.050.1.10

Google Scholar

[25] N. Murayama, S. Yoshida, Y. Takami, H. Yamamoto, J. Shibata, Simultaneous removal of NH4+ and PO43– in aqueous solution and its mechanism by using zeolite synthesized from coal fly ash, Sep. Sci. Technol. 38 (2003) 113–129.

DOI: 10.1081/ss-120016701

Google Scholar

[26] B. Zhang, D. Wu, C. Wang, S. He, Z. Zhang, H. Kong, Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment, J. Environ. Sci. 19 (2007) 540–545.

DOI: 10.1016/s1001-0742(07)60090-4

Google Scholar

[27] J. Chen, H. Kong, D. Wu, Z. Hu, Z. Wang, Y. Wang, Removal of phosphate from aqueous solution by zeolite synthesized from fly ash, J. Colloid Interface Sci. 300 (2006) 491–497.

DOI: 10.1016/j.jcis.2006.04.010

Google Scholar

[28] X.D. Ji, M.L. Zhang, Y.Y. Ke, Y.C. Song, Simultaneous immobilization of ammonium and phosphate from aqueous solution using zeolites synthesized from fly ashes, Water Sci. Technol. 67(6) (2013) 1324–1331.

DOI: 10.2166/wst.2013.690

Google Scholar

[29] N. Karapınar, Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions, J. Hazard. Mater. 170 (2009) 1186–1191.

DOI: 10.1016/j.jhazmat.2009.05.094

Google Scholar

[30] Y.L. Sun, J.W. Lin, H. Huang, W.Y. Zhang, D.D. Ma, Simultaneous removal of ammonium and phosphate from aqueous solution by calcium chloride-modified zeolite, Adv. Mater. Research, 356–360 (2012) 1581–1585.

DOI: 10.4028/www.scientific.net/amr.356-360.1581

Google Scholar

[31] D. Guaya, C. Valderrama, A. Farran, C. Armijos, J.L. Cortina, Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite, Chem. Eng. J. 271 (2015) 204–213.

DOI: 10.1016/j.cej.2015.03.003

Google Scholar

[32] D. Guaya, C. Valderrama, A. Farran, J.L. Cortina, Modification of a natural zeolite with Fe(III) for simultaneous phosphate and ammonium removal from aqueous solutions, J. Chem. Technol. Biotechnol. 91 (2016) 1737–1746.

DOI: 10.1002/jctb.4763

Google Scholar

[33] Y. He, H. Lin, Y. Dong, Q. Liu, L. Wang, Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite, Chemosphere 164 (2016) 387–395.

DOI: 10.1016/j.chemosphere.2016.08.110

Google Scholar

[34] C. Murphy, O. Hrycyk, W. Gleason, Natural Zeolites: Occurence, Properties, Use. Pergamon, Oxford, (1978).

Google Scholar

[35] G. Gottardi, E. Galli, Natural Zeolites, Springer Verlag, Berlin, (1985).

Google Scholar

[36] Y. Song, H.H. Hahn, E. Hoffmann, Effects of solution conditions on the precipitation of phosphate for recovery. A thermodynamic evaluation, Chemosphere, 48 (2002) 1029–1034.

DOI: 10.1016/s0045-6535(02)00183-2

Google Scholar

[37] S.G. Lu, S.Q. Bai, L. Zhu, H.D. Shan, Removal mechanism of phosphate from aqueous solution by fly ash, J. Hazard. Mater. 161 (2009) 95–101.

DOI: 10.1016/j.jhazmat.2008.02.123

Google Scholar

[38] E. Antunes, M.V. Jacob, G. Brodie, P.A. Schneider, Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis, J. Environ. Chem. Eng. 6 (1) (2018) 395–403.

DOI: 10.1016/j.jece.2017.12.011

Google Scholar