[1]
G. Suárez, Y. Sakka, T.S. Suzuki, T. Uchikoshi, X. Zhu, E.F. Aglietti, Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing, Science and Technology of Advanced Materials 10:025004 (1‐8) (2009).
DOI: 10.1088/1468-6996/10/2/025004
Google Scholar
[2]
C. A. Handwerker, J. E. Blendell, R. L. Coble, Sintering of Ceramics, Science of Sintering. (1989).
Google Scholar
[3]
U. Sutharsini, M. Thanihaichelvan, R. Singh, Two-Step Sintering of Ceramics, Sintering of Functional Materials, Igor Shishkovsky, IntechOpen, 2017, рр.3-21.
DOI: 10.5772/68083
Google Scholar
[4]
S.A. Ghyngazov, S.A. Shevelev, Effect of additives on sintering of zirconia ceramics, Journal of Thermal Analysis and Calorimetry 134 (2018).
DOI: 10.1007/s10973-018-7249-0
Google Scholar
[5]
M. Khodaei, O. Уaghobizadeh, S.H. Naghavi Alhosseini, S. Еsmaeeli, S.R. Mousavi, The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: A review, Journal of the European Ceramic Society 39 (2019).
DOI: 10.1016/j.jeurceramsoc.2019.02.042
Google Scholar
[6]
Y. Zhu, H. Cheng, Y. Wang, R. An, Effects of carbon and silicon on microstructure and mechanical properties of pressureless sintered B 4 C/TiB 2 composites, Journal of Alloys and Compounds 772 (2019).
DOI: 10.1016/j.jallcom.2018.09.129
Google Scholar
[7]
Y. Ai, X. Xie, W. He, B. Liang, Y. Fan, Microstructure and properties of Al2O3 (n)/ZrO2 dental ceramics prepared by two‐step microwave sintering, Materials & Design 65 (2015).
DOI: 10.1016/j.matdes.2014.10.054
Google Scholar
[8]
M. Zhou, Z. Huang, N. Ma, J. Qi, H. Zhang, X. Guo, D. Wu, Y. Zhang, T. Lu, Rapid preparation of dense Gd2Zr2O7 nano-grain ceramics by microwave sintering in air, Ceramics International 45 (2019).
DOI: 10.1016/j.ceramint.2019.02.173
Google Scholar
[9]
R. Kumar, M. Zulfequar, T.D. Senguttuvan, Improved giant dielectric properties in microwave flash combustion derived and microwave sintered CaCu3Ti4O12 ceramics 42 (2019).
DOI: 10.1007/s10832-018-0145-y
Google Scholar
[10]
Kim H.D., Han B.D., Park D.S., Lee B.T., Becher P.F. Novel two‐step sintering process to obtain a bimodal microstructure in silicon nitride, Journal of the American Ceramic Society 85 (2002) 245‐252.
DOI: 10.1111/j.1151-2916.2002.tb00073.x
Google Scholar
[11]
Z.R. Hesabi, M. Mazaheri, T. Ebadzadeh, Enhanced electrical conductivity of ultrafinegrained 8Y2O3 stabilized ZrO2 produced by two‐step sintering technique, Journal of Alloys and Compounds 494 (2010).
DOI: 10.1016/j.jallcom.2010.01.046
Google Scholar
[12]
Khosroshahi H.R., Ikeda H., Yamada K., Saito N., Kaneko K., Hayashi K., Nakashima K., Effect of cation doping on mechanical properties of yttria prepared by an optimized two step sintering process, Journal of the American Ceramic Society 95 (2012).
DOI: 10.1111/j.1551-2916.2012.05379.x
Google Scholar
[13]
A.V. Malyshev, E.N. Lysenko, V.A. Vlasov, Microstructure, electromagnetic and dielectric properties of zinc substituted lithium ferrites prepared by radiation-thermal heating, Ceram. Int. 41 (2015).
DOI: 10.1016/j.ceramint.2015.07.165
Google Scholar
[14]
A.P. Surzhikov, T.S. Frangulyan, S.A. Ghyngazov, I.P. Vasil'ev, A.V. Chernyavskii, Sintering of zirconia ceramics by intense high-energy electron beam, Ceramics International 42 (2016).
DOI: 10.1016/j.ceramint.2016.05.198
Google Scholar
[15]
V.G. Kostishin, V.G. Andreev, V.V. Korovushkin, D.N. Chitanov, N.A. Yudanov, A.T. Morchenko, A.S. Komlev, A.Yu Adamtsov, A.N. Nikolaev, Preparation of 2000NN ferrite ceramics by a complete and a short radiation-enhanced thermal sintering process, Inorg. Mater. 50 (2014).
DOI: 10.1134/s0020168514110089
Google Scholar
[16]
A.M. Pritulov, A.P. Surzhikov, B.A. Kozhemyakin, Yu.N. Afanasiev, A.P. Voronin, O.S. Gribkov, G.R. Karagedov, Radiation-thermal packing of lithium ferrite compacts, Phys. Status Sol. (A) Appl. Res. 119 (1990).
DOI: 10.1002/pssa.2211190203
Google Scholar
[17]
H. Borodianska, D. Demirskyi, Y. Sakka, P.Badica, O. Vasylkiv, Grain boundary diffusion driven spark plasma sintering of nanocrystalline zirconia, Ceram. Int. 38 (2012).
DOI: 10.1016/j.ceramint.2011.12.064
Google Scholar
[18]
M. Mazaheri, A.M. Zahedi, M. Haghighatzadeh, S.K. Sadrnezhaad, Sintering of titania nanoceramic: Densification and grain growth, Ceramics International 35 (2009).
DOI: 10.1016/j.ceramint.2008.02.005
Google Scholar
[19]
S. Schwarz, O. Guillon, Two step sintering of cubic yttria stabilized zirconia using Field Assisted Sintering Technique/Spark Plasma Sintering, Journal of the European Ceramic Society 33 (2013).
DOI: 10.1016/j.jeurceramsoc.2012.10.002
Google Scholar
[20]
J.J. Bian, M. Otonicar, M. Spreitzer, D. Vengust, D. Suvorov, Structural evolution, dielectric and energy storage properties of Na(Nb1−xTax)O3 ceramics prepared by spark plasma sintering, Journal of the European Ceramic Society 39 (2019).
DOI: 10.1016/j.jeurceramsoc.2019.02.007
Google Scholar
[21]
P. Dahl, I. Kaus, Z. Zhao, M. Johnsson, M. Nygren, K. Wiik, T. Grande, M.A. Einarsrud, Densification and properties of zirconia prepared by three different sintering techniques, Ceram. Int. 33 (2007).
DOI: 10.1016/j.ceramint.2006.07.005
Google Scholar
[22]
P. Feng, M. Niu, C. Gao, S. Peng, C. Shuai, A novel two‐step sintering for nano‐hydroxyapatite scaffolds for bone tissue engineering, Scientific Reports 4 (2014).
DOI: 10.1038/srep05599
Google Scholar
[23]
N.J. Lóha,b, L. Simãoa,b, C.A. Fallera, A. De Noni Jra,b, O.R.K. Montedo, A review of two-step sintering for ceramics, Ceram. Int. 42 (2016).
Google Scholar
[24]
V.K. Larin, V.M. Kondakov, E.N. Malyi, V.A. Matyuha, N.V. Dedov, Plasma-chemical method to obtain ultrafine (nano) powders of metal oxides and prospective lines of their development, Izv. vuzov. Tsvetnaya metallurgiya 5 (2003).
Google Scholar