Two-Step Sintering of Zirconia Ceramics by Intense High-Energy Electron Beam

Article Preview

Abstract:

A comparative analysis of the efficiency of zirconia ceramics high-energy electron beam sintering by one-step mode and two-step mode sintering was performed for compacts prepared from commercial TZ-3Y-E grade and plasmo-chemical powders. The electron energy was 1.4 MeV. The samples were sintered in the temperature range of 1100–1300°C. The extent of influence of one-step and two-step sintering mode on the characteristics of sintered ceramics depends on the initial powders. Сorrectly chosen the temperature mode of two-step sintering (Ts1=1300°C t = 15 min, Ts2=1200°C t=1 h) leads to an increase of the density and microhardness values of ceramics relatively considered of results at one-step and two-step mode of sintering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Suárez, Y. Sakka, T.S. Suzuki, T. Uchikoshi, X. Zhu, E.F. Aglietti, Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing, Science and Technology of Advanced Materials 10:025004 (1‐8) (2009).

DOI: 10.1088/1468-6996/10/2/025004

Google Scholar

[2] C. A. Handwerker, J. E. Blendell, R. L. Coble, Sintering of Ceramics, Science of Sintering. (1989).

Google Scholar

[3] U. Sutharsini, M. Thanihaichelvan, R. Singh, Two-Step Sintering of Ceramics, Sintering of Functional Materials, Igor Shishkovsky, IntechOpen, 2017, рр.3-21.

DOI: 10.5772/68083

Google Scholar

[4] S.A. Ghyngazov, S.A. Shevelev, Effect of additives on sintering of zirconia ceramics, Journal of Thermal Analysis and Calorimetry 134 (2018).

DOI: 10.1007/s10973-018-7249-0

Google Scholar

[5] M. Khodaei, O. Уaghobizadeh, S.H. Naghavi Alhosseini, S. Еsmaeeli, S.R. Mousavi, The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: A review, Journal of the European Ceramic Society 39 (2019).

DOI: 10.1016/j.jeurceramsoc.2019.02.042

Google Scholar

[6] Y. Zhu, H. Cheng, Y. Wang, R. An, Effects of carbon and silicon on microstructure and mechanical properties of pressureless sintered B 4 C/TiB 2 composites, Journal of Alloys and Compounds 772 (2019).

DOI: 10.1016/j.jallcom.2018.09.129

Google Scholar

[7] Y. Ai, X. Xie, W. He, B. Liang, Y. Fan, Microstructure and properties of Al2O3 (n)/ZrO2 dental ceramics prepared by two‐step microwave sintering, Materials & Design 65 (2015).

DOI: 10.1016/j.matdes.2014.10.054

Google Scholar

[8] M. Zhou, Z. Huang, N. Ma, J. Qi, H. Zhang, X. Guo, D. Wu, Y. Zhang, T. Lu, Rapid preparation of dense Gd2Zr2O7 nano-grain ceramics by microwave sintering in air, Ceramics International 45 (2019).

DOI: 10.1016/j.ceramint.2019.02.173

Google Scholar

[9] R. Kumar, M. Zulfequar, T.D. Senguttuvan, Improved giant dielectric properties in microwave flash combustion derived and microwave sintered CaCu3Ti4O12 ceramics 42 (2019).

DOI: 10.1007/s10832-018-0145-y

Google Scholar

[10] Kim H.D., Han B.D., Park D.S., Lee B.T., Becher P.F. Novel two‐step sintering process to obtain a bimodal microstructure in silicon nitride, Journal of the American Ceramic Society 85 (2002) 245‐252.

DOI: 10.1111/j.1151-2916.2002.tb00073.x

Google Scholar

[11] Z.R. Hesabi, M. Mazaheri, T. Ebadzadeh, Enhanced electrical conductivity of ultrafinegrained 8Y2O3 stabilized ZrO2 produced by two‐step sintering technique, Journal of Alloys and Compounds 494 (2010).

DOI: 10.1016/j.jallcom.2010.01.046

Google Scholar

[12] Khosroshahi H.R., Ikeda H., Yamada K., Saito N., Kaneko K., Hayashi K., Nakashima K., Effect of cation doping on mechanical properties of yttria prepared by an optimized two step sintering process, Journal of the American Ceramic Society 95 (2012).

DOI: 10.1111/j.1551-2916.2012.05379.x

Google Scholar

[13] A.V. Malyshev, E.N. Lysenko, V.A. Vlasov, Microstructure, electromagnetic and dielectric properties of zinc substituted lithium ferrites prepared by radiation-thermal heating, Ceram. Int. 41 (2015).

DOI: 10.1016/j.ceramint.2015.07.165

Google Scholar

[14] A.P. Surzhikov, T.S. Frangulyan, S.A. Ghyngazov, I.P. Vasil'ev, A.V. Chernyavskii, Sintering of zirconia ceramics by intense high-energy electron beam, Ceramics International 42 (2016).

DOI: 10.1016/j.ceramint.2016.05.198

Google Scholar

[15] V.G. Kostishin, V.G. Andreev, V.V. Korovushkin, D.N. Chitanov, N.A. Yudanov, A.T. Morchenko, A.S. Komlev, A.Yu Adamtsov, A.N. Nikolaev, Preparation of 2000NN ferrite ceramics by a complete and a short radiation-enhanced thermal sintering process, Inorg. Mater. 50 (2014).

DOI: 10.1134/s0020168514110089

Google Scholar

[16] A.M. Pritulov, A.P. Surzhikov, B.A. Kozhemyakin, Yu.N. Afanasiev, A.P. Voronin, O.S. Gribkov, G.R. Karagedov, Radiation-thermal packing of lithium ferrite compacts, Phys. Status Sol. (A) Appl. Res. 119 (1990).

DOI: 10.1002/pssa.2211190203

Google Scholar

[17] H. Borodianska, D. Demirskyi, Y. Sakka, P.Badica, O. Vasylkiv, Grain boundary diffusion driven spark plasma sintering of nanocrystalline zirconia, Ceram. Int. 38 (2012).

DOI: 10.1016/j.ceramint.2011.12.064

Google Scholar

[18] M. Mazaheri, A.M. Zahedi, M. Haghighatzadeh, S.K. Sadrnezhaad, Sintering of titania nanoceramic: Densification and grain growth, Ceramics International 35 (2009).

DOI: 10.1016/j.ceramint.2008.02.005

Google Scholar

[19] S. Schwarz, O. Guillon, Two step sintering of cubic yttria stabilized zirconia using Field Assisted Sintering Technique/Spark Plasma Sintering, Journal of the European Ceramic Society 33 (2013).

DOI: 10.1016/j.jeurceramsoc.2012.10.002

Google Scholar

[20] J.J. Bian, M. Otonicar, M. Spreitzer, D. Vengust, D. Suvorov, Structural evolution, dielectric and energy storage properties of Na(Nb1−xTax)O3 ceramics prepared by spark plasma sintering, Journal of the European Ceramic Society 39 (2019).

DOI: 10.1016/j.jeurceramsoc.2019.02.007

Google Scholar

[21] P. Dahl, I. Kaus, Z. Zhao, M. Johnsson, M. Nygren, K. Wiik, T. Grande, M.A. Einarsrud, Densification and properties of zirconia prepared by three different sintering techniques, Ceram. Int. 33 (2007).

DOI: 10.1016/j.ceramint.2006.07.005

Google Scholar

[22] P. Feng, M. Niu, C. Gao, S. Peng, C. Shuai, A novel two‐step sintering for nano‐hydroxyapatite scaffolds for bone tissue engineering, Scientific Reports 4 (2014).

DOI: 10.1038/srep05599

Google Scholar

[23] N.J. Lóha,b, L. Simãoa,b, C.A. Fallera, A. De Noni Jra,b, O.R.K. Montedo, A review of two-step sintering for ceramics, Ceram. Int. 42 (2016).

Google Scholar

[24] V.K. Larin, V.M. Kondakov, E.N. Malyi, V.A. Matyuha, N.V. Dedov, Plasma-chemical method to obtain ultrafine (nano) powders of metal oxides and prospective lines of their development, Izv. vuzov. Tsvetnaya metallurgiya 5 (2003).

Google Scholar