X-Ray and Thermogravimetric Analyzes of Mechanically Activated Nickel Ferrites

Article Preview

Abstract:

This article shows a study of the effect of mechanical activation of the initial mixture of reagents NiO and Fe2O3 at different speeds of grinding bowl rotation on synthesis of nickel ferrite. Nickel ferrite was produced by the solid-phase synthesis at a temperature of 900 °C for 240 minutes. The obtained ferrite samples were investigated by thermal gravimetric and X-ray phase analysis. The Curie temperature values are obtained, as well as the magnitude of the change of detected instrument weight at the magnetic phase transition (ferromagnetic-paramagnetic) of nickel ferrite using thermal gravimetric curves (TG/DTG) with applied external magnetic field. Increasing of the homogeneity degree of ferrite materials with an increase in the mechanical activation rate is shown based on the data of X-ray phase analysis. The experimental results obtained from thermal, magnetic, and X-ray analyzes were compared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-23

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.R. Dehghanpour. High coercivity induced in nickel ferrite nanoparticles by mechanical milling. J. Struc. Chem. 59 (2018) 1122-1127.

DOI: 10.1134/s0022476618050141

Google Scholar

[2] S.S. Menon, R. Krishna, L. Wilson, S. Sambhudevan, B. Shankar, A. Mayeen, N. Kalarikkal. Magnetic and dielectric properties of nickel-ferrite embedded natural rubber composites. Polym. Bull. 75 (2018) 5217-5234.

DOI: 10.1007/s00289-018-2323-0

Google Scholar

[3] A.R. Chavan, R.R. Chilwar, P.B. Kharat, K.M. Jadhav. Effect of annealing temperature on structural, morphological, optical and magnetic properties of Ni2Fe2O4 thin films. J Supercond Nov Magn. 31 (2018) 2949-2958.

DOI: 10.1007/s10948-018-4565-3

Google Scholar

[4] Z. Cherkezova-Zveleva, V. Blaskov, I. Mitov, D. Klissurski, D. Radev, P. Tsokov. Mechanochemically activated synthesis of nanostructured NiFe2O4. Inorgan. Mater. 47 (2011) 527-530.

DOI: 10.1134/s0020168511050074

Google Scholar

[5] Z.H. Zhou, J.M. Xue, J. Wanga., et al. NiFe2O4 nanoparticles formed in situ in silica matrix by Mechanical Activation. J. Appl. Phys. 91 (2002) 6015-6020.

DOI: 10.1063/1.1462853

Google Scholar

[6] V. Šepelák, L. Wilde, U. Steinike, K.D. Becker. Thermal stability of the non-equlibrium cation distribution in nanocrystalline high-energy milled spinel ferrite. Mater. Sci. Eng. A. 375-377 (2004) 865-868.

DOI: 10.1016/j.msea.2003.10.179

Google Scholar

[7] E. Lysenko, E. Nikolaev, V. Vlasov, A. Surzhikov. Microstructure and reactivity of Fe2O3-Li2CO3-ZnO ferrite system ball-milled in a planetary mill. Thermochim. Acta. 664 (2018) 100-107.

DOI: 10.1016/j.tca.2018.04.015

Google Scholar

[8] I. Idza Riati, H. Mansor, N. Rodziah, I. Ismayadi, K. Samikannu., et al. A comparative study of different sintering routes effect on evolving microstructure and B-H magnetic hysteresis in mechanically-alloyed Ni-Zn ferrite, Ni0.3Zn0.7Fe2O4. J. Mater. Sci-Mater. El. 26 (2015) 59-65.

DOI: 10.1007/s10854-014-2362-8

Google Scholar

[9] A.P. Surzhikov, E.N. Lysenko, E.A. Sheveleva, A.V. Malyshev, A.L. Astafyev, V.A. Vlasov. X-ray diffraction and magnetic investigation of lithium-zinc ferrites synthesized by electron beam heating. J. Electron. Mater. 47 (2018) 1192-1200.

DOI: 10.1007/s11664-017-5896-8

Google Scholar

[10] A.M. Gismelseed, K.A. Mohammed, H.M. Widatallah, A.D. Al-Rawas, M.E. Elzain, A.A. Yousif. Structure and magnetic properties of the ZnxMg1-xFe2O4 ferrites. J. Phys. Conf. Ser. 217 (2010) 012138.

DOI: 10.1088/1742-6596/217/1/012138

Google Scholar

[11] D.V. Kurmude, R.S. Barkule, A.V. Raut, D.R. Shengule, K.M. Jadhav. X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J Supercond Nov Magn. 27(2014) 547-553.

DOI: 10.1007/s10948-013-2305-2

Google Scholar

[12] K. Angus, P. Thomas, J-P. Guerbois. Synthesis and characterization of cobalite and ferrite spinels using thermogravimetric analysis and X-ray crystallography. J. Therm. Anal. Calorim. 108 (2012) 449-452.

DOI: 10.1007/s10973-011-1863-4

Google Scholar

[13] J.D. Baraliya, H.H. Joshi. Spectroscopic and thermographic study of Ni-Zn ferrites. J. Therm. Anal. Calorim. 119 (2015) 85-90.

DOI: 10.1007/s10973-014-4177-5

Google Scholar

[14] A.L. Astafyev, A.P. Surzhikkov, E.N. Lysenko. Estimation of thermomagnetometry method sensitivity for magnetic phase determination. IOP Conf. Ser: Mater. Sci. Eng. 110 (2016) 012090.

DOI: 10.1088/1757-899x/110/1/012090

Google Scholar

[15] J. Sláma, M. Šoka, A. Grusková, R. Dosoudil, V. Jančárik, J. Degmová. Magnetic properties of selected substitutedspinel ferrites. J. Magn. Magn. Mater. 326 (2013) 251-256.

DOI: 10.1016/j.jmmm.2012.07.016

Google Scholar