[1]
S.J. Gil Sevillano, P.V. Houtte, E. Aernoudt, Large strain work hardening and textures, Prog. Mater. Sci. 25 (1980) 69-412.
DOI: 10.1016/0079-6425(80)90001-8
Google Scholar
[2]
Y.H. Chung, J.W. Park, K.H. Lee, An analysis of accumulated deformation in the equal channel angular rolling process, Met. Mater. Int. 12 (4) (2006) 289–293.
DOI: 10.1007/bf03027545
Google Scholar
[3]
H.R. Song, Y.S. Kim, W.J. Nam, Mechanical properties of ultrafine grained 5052 Al alloy produced by accumulative roll-bonding and cryogenic rolling, Met. Mater. Int. 12 (1) (2006) 7-13.
DOI: 10.1007/bf03027516
Google Scholar
[4]
P. Quang, Y.G. Jeong, S.H. Hong and H.S. Kim, Equal Channel Angular Pressing of Carbon Nanotube Reinforced Metal Matrix Nanocomposites, Key Engineering Materials 326-328 (2006) 325-328.
DOI: 10.4028/www.scientific.net/kem.326-328.325
Google Scholar
[5]
P. Quang, Y.G. Jeong, S.C. Yoon, S.H. Hong and H.S. Kim, Consolidation 1 Vol% Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing, Journal of Materials Processing Technology, 187-188 (2007) 46-50.
DOI: 10.1016/j.jmatprotec.2006.11.116
Google Scholar
[6]
W. Skrotzki et al., Processing of High Strength Light-Weight Metallic Composites, Adv. Eng. Mater., 16 (2014) 1208-1216,.
DOI: 10.1002/adem.201400190
Google Scholar
[7]
P. Quang, D.M. Nghiep, Numerical Simulation and Experimental Analysis of The Equal Channel Angular Pressing of Pure Titanium, Korean Journal of Metals and Materials 54-3 (2016) 217-223 217.
DOI: 10.3365/kjmm.2016.54.3.217
Google Scholar
[8]
R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A, A168 (1993) 141–8.
DOI: 10.1016/0921-5093(93)90717-s
Google Scholar
[9]
V. M. Segal, Materials processing by simple shear, Mater. Sci. Eng. A197 (1995) 157-164.
Google Scholar
[10]
R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Progress in Materials Science 45(2) (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[11]
R.Z. Valiev, Developing SPD Methods for Processing Bulk Nanostructured Materials with Enhanced Properties, Metal Mater. Inter. 7 (2001) 413-420.
DOI: 10.1007/bf03027081
Google Scholar
[12]
Y. Fukuda, K. Ohishi, Z. Horita and T.G. Langdon, Processing of a low-carbon steel by equal-channel angular pressing, Acta Mater. 50 (2002) 1359-1368.
DOI: 10.1016/s1359-6454(01)00441-4
Google Scholar
[13]
Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater. 39 (1998) 1221-1227.
DOI: 10.1016/s1359-6462(98)00302-9
Google Scholar
[14]
N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process, Scripta Mater. 40 (1999) 795-800.
DOI: 10.1016/s1359-6462(99)00015-9
Google Scholar
[15]
Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process, Acta materialia 47 (2) (1999) 579-583.
DOI: 10.1016/s1359-6454(98)00365-6
Google Scholar
[16]
C.C. Hsieh, M.S. Shi, W. Wu, Growth of intermetallic phases in Al/Cu composites at various annealing temperatures during the ARB process, Metals and Materials Inter., 18 (1) ( 2012) 1-6.
DOI: 10.1007/s12540-012-0001-6
Google Scholar
[17]
K. Wu, H. Chang, E. Maawad, W.M. Gan, H. G. Brokmeier, M. Y. Zheng, Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB), Materials Science and Engineering A 527(13) (2010) 3073-3078.
DOI: 10.1016/j.msea.2010.02.001
Google Scholar
[18]
A. Mozaffari, H. Danesh, K. Janghorban, Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process, J. Alloys and Compounds, 489 (2010) 103-109.
DOI: 10.1016/j.jallcom.2009.09.022
Google Scholar
[19]
L. Ghalandari, M.M. Mahdavian, M. Reihanian, Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB), Materials Science & Engineering A, 593 (2014) 145-152.
DOI: 10.1016/j.msea.2013.11.026
Google Scholar
[20]
Abaqus 6.13: Abaqus/CAE User´s Manual, © Dassault Systèmes.
Google Scholar
[21]
Abaqus 6.13: Abaqus/Theory Manual, © Dassault Systèmes.
Google Scholar
[22]
R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, (1976).
Google Scholar
[23]
E.A. Brandes, Smithells metals reference book, Butterworths, (1988).
Google Scholar
[24]
W.F. Hosford, R.M. Caddell, Metal Forming: Mechanics and Metallurgy (THIRD EDITION) © William F. Hosford (2007).
DOI: 10.1017/cbo9780511811111
Google Scholar
[25]
K.J. Kurzydlowski Hydrostatic, Extrusion as a Method of Grain Refinement in Metallic Materials, Mater. Sci. Forum 503–504 (2006) 341-348.
DOI: 10.4028/www.scientific.net/msf.503-504.341
Google Scholar
[26]
M. Umemoto, Nanocrystallization of steels by severe plastic deformation, Materials Transaction 44 (10) (2003) 1900-1911.
DOI: 10.2320/matertrans.44.1900
Google Scholar
[27]
J.M. Blocher, C.F. Powell, J.H. Oxley, J.M Blocher (Eds.), Vapor Deposition, John Wiley & Sons, New York (1967).
Google Scholar
[28]
N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino, ARB (Accumulative Roll‐Bonding) and other new techniques to produce bulk ultrafine grained materials, Adv. Eng. Mater. 5 (2003) 338-344.
DOI: 10.1002/adem.200310077
Google Scholar