The Simulation of Shear Angle and Deformations of Cu/Al Composite Sheets during Accumulated Roll Bonding

Article Preview

Abstract:

The present simulation study gives shear angle distribution and deformations, there in the effect of severe plastic deformation due to the accumulated roll bonding on the crystalline structure of materials is discussed. In the analysis, the classical metal plasticity models with a von Mises yield surfaceand thePLASTIC, HARDENING = ISOTROPIC as keyword in ABAQUS, were employed. The equivalent strain, εeq, imposed by rolling is defined as micro-hardness was used to characterize the mechanical properties. After four cycles, the mechanical properties were improved with increasing ARB cycles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

September 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Gil Sevillano, P.V. Houtte, E. Aernoudt, Large strain work hardening and textures, Prog. Mater. Sci. 25 (1980) 69-412.

DOI: 10.1016/0079-6425(80)90001-8

Google Scholar

[2] Y.H. Chung, J.W. Park, K.H. Lee, An analysis of accumulated deformation in the equal channel angular rolling process, Met. Mater. Int. 12 (4) (2006) 289–293.

DOI: 10.1007/bf03027545

Google Scholar

[3] H.R. Song, Y.S. Kim, W.J. Nam, Mechanical properties of ultrafine grained 5052 Al alloy produced by accumulative roll-bonding and cryogenic rolling, Met. Mater. Int. 12 (1) (2006) 7-13.

DOI: 10.1007/bf03027516

Google Scholar

[4] P. Quang, Y.G. Jeong, S.H. Hong and H.S. Kim, Equal Channel Angular Pressing of Carbon Nanotube Reinforced Metal Matrix Nanocomposites, Key Engineering Materials 326-328 (2006) 325-328.

DOI: 10.4028/www.scientific.net/kem.326-328.325

Google Scholar

[5] P. Quang, Y.G. Jeong, S.C. Yoon, S.H. Hong and H.S. Kim, Consolidation 1 Vol% Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing, Journal of Materials Processing Technology, 187-188 (2007) 46-50.

DOI: 10.1016/j.jmatprotec.2006.11.116

Google Scholar

[6] W. Skrotzki et al., Processing of High Strength Light-Weight Metallic Composites, Adv. Eng. Mater., 16 (2014) 1208-1216,.

DOI: 10.1002/adem.201400190

Google Scholar

[7] P. Quang, D.M. Nghiep, Numerical Simulation and Experimental Analysis of The Equal Channel Angular Pressing of Pure Titanium, Korean Journal of Metals and Materials 54-3 (2016) 217-223 217.

DOI: 10.3365/kjmm.2016.54.3.217

Google Scholar

[8] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A, A168 (1993) 141–8.

DOI: 10.1016/0921-5093(93)90717-s

Google Scholar

[9] V. M. Segal, Materials processing by simple shear, Mater. Sci. Eng. A197 (1995) 157-164.

Google Scholar

[10] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Progress in Materials Science 45(2) (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[11] R.Z. Valiev, Developing SPD Methods for Processing Bulk Nanostructured Materials with Enhanced Properties, Metal Mater. Inter. 7 (2001) 413-420.

DOI: 10.1007/bf03027081

Google Scholar

[12] Y. Fukuda, K. Ohishi, Z. Horita and T.G. Langdon, Processing of a low-carbon steel by equal-channel angular pressing, Acta Mater. 50 (2002) 1359-1368.

DOI: 10.1016/s1359-6454(01)00441-4

Google Scholar

[13] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater. 39 (1998) 1221-1227.

DOI: 10.1016/s1359-6462(98)00302-9

Google Scholar

[14] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process, Scripta Mater. 40 (1999) 795-800.

DOI: 10.1016/s1359-6462(99)00015-9

Google Scholar

[15] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process, Acta materialia 47 (2) (1999) 579-583.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[16] C.C. Hsieh, M.S. Shi, W. Wu, Growth of intermetallic phases in Al/Cu composites at various annealing temperatures during the ARB process, Metals and Materials Inter., 18 (1) ( 2012) 1-6.

DOI: 10.1007/s12540-012-0001-6

Google Scholar

[17] K. Wu, H. Chang, E. Maawad, W.M. Gan, H. G. Brokmeier, M. Y. Zheng, Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB), Materials Science and Engineering A 527(13) (2010) 3073-3078.

DOI: 10.1016/j.msea.2010.02.001

Google Scholar

[18] A. Mozaffari, H. Danesh, K. Janghorban, Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process, J. Alloys and Compounds, 489 (2010) 103-109.

DOI: 10.1016/j.jallcom.2009.09.022

Google Scholar

[19] L. Ghalandari, M.M. Mahdavian, M. Reihanian, Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB), Materials Science & Engineering A, 593 (2014) 145-152.

DOI: 10.1016/j.msea.2013.11.026

Google Scholar

[20] Abaqus 6.13: Abaqus/CAE User´s Manual, © Dassault Systèmes.

Google Scholar

[21] Abaqus 6.13: Abaqus/Theory Manual, © Dassault Systèmes.

Google Scholar

[22] R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, (1976).

Google Scholar

[23] E.A. Brandes, Smithells metals reference book, Butterworths, (1988).

Google Scholar

[24] W.F. Hosford, R.M. Caddell, Metal Forming: Mechanics and Metallurgy (THIRD EDITION) © William F. Hosford (2007).

DOI: 10.1017/cbo9780511811111

Google Scholar

[25] K.J. Kurzydlowski Hydrostatic, Extrusion as a Method of Grain Refinement in Metallic Materials, Mater. Sci. Forum 503–504 (2006) 341-348.

DOI: 10.4028/www.scientific.net/msf.503-504.341

Google Scholar

[26] M. Umemoto, Nanocrystallization of steels by severe plastic deformation, Materials Transaction 44 (10) (2003) 1900-1911.

DOI: 10.2320/matertrans.44.1900

Google Scholar

[27] J.M. Blocher, C.F. Powell, J.H. Oxley, J.M Blocher (Eds.), Vapor Deposition, John Wiley & Sons, New York (1967).

Google Scholar

[28] N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino, ARB (Accumulative Roll‐Bonding) and other new techniques to produce bulk ultrafine grained materials, Adv. Eng. Mater. 5 (2003) 338-344.

DOI: 10.1002/adem.200310077

Google Scholar