[1]
Lee AG, How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta, vol. 1666, 62-87 (2004).
Google Scholar
[2]
Mcintosh TJ, Simon SA, Roles of bilyer material properties in function and distribution of membrane proteins, Annu Rev Biophys Biomol Struct, vol. 35, 177-198 (2006).
DOI: 10.1146/annurev.biophys.35.040405.102022
Google Scholar
[3]
De Planque MRR, Killian JA, Protein-lipid interactions studied with designed transmembrane peptides, role of hydrophobic matching and interfacial anchoring, Mol Membr Biol, vol. 20, 271-284 (2004).
DOI: 10.1080/09687680310001605352
Google Scholar
[4]
De Planque, M. R. R., D. V. Greathouse, R. E. Koeppe, II, H. Schäfer, D. Marsh, and J. A. Killian. Influence of lipid/peptide mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane a-helical peptides and gramicidin A. Biochemistry. vol. 37:9333–9345 (1998).
DOI: 10.1021/bi980233r
Google Scholar
[5]
De Planque, M. R. R., J. A. W. Kruijtzer, R. M. J. Liskamp, D. Marsh, D. V. Greathouse, R. E. Koeppe, II, B. de Kruijff, and J. A. Killian. Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane a-helical peptides. J. Biol. Chem. vol. 274, 20839–20846 (1999).
DOI: 10.1074/jbc.274.30.20839
Google Scholar
[6]
Killian, J. A., I. Salemink, M. R. R. de Planque, G. Lindblom, R. E. Koeppe, II, and D. V. Greathouse. Introduction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane a-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry. vol. 35, 1037–1045 (1996).
DOI: 10.1021/bi9519258
Google Scholar
[7]
Morein, S., E. Strandberg, J. A. Killian, S. Persson, G. Arvidson, R. E. Koeppe, II, and G. Lindblom. Influence of membrane-spanning a-helical peptides on the phase behaviour of dioleoylphosphatidylcholine/water system. Biophys. J. vol. 73, 3078 –3088 (1997).
DOI: 10.1016/s0006-3495(97)78335-8
Google Scholar
[8]
Huschilt, J. C., R. S. Hodges, and J. H. Davis. Phase equilibria in an amphiphilic peptide-phospholipid model membrane by deuterium nuclear magnetic resonance difference spectroscopy. Biochemistry. vol. 24, 1377–1386 (1985).
DOI: 10.1021/bi00327a015
Google Scholar
[9]
Morrow, M. R., J. C. Huschilt, and J. H. Davis. Simultaneous modelling of phase and calorimetric behavior in an amphiphilic peptide/phospholipid model membrane. Biochemistry. vol. 24, 5396 –5406 (1985).
DOI: 10.1021/bi00341a018
Google Scholar
[10]
Zhang, Y.-P., R. N. A. H. Lewis, R. S. Hodges, and R. N. McElhaney. Interaction of a peptide model of a hydrophobic transmembrane a-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. Biochemistry. vol. 31, 11579 –11588 (1992).
DOI: 10.1021/bi00161a042
Google Scholar
[11]
Zhang, Y.-P., R. N. A. H. Lewis, R. S. Hodges, and R. N. McElhaney. 1995. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 2. Differential scanning calorimetric and FTIR studies of the interaction of Ac-K2-(LA)12-K2-amide with phosphatidylcholine bilayers. Biochemistry. vol. 34:2362–2371.
DOI: 10.1021/bi00007a032
Google Scholar
[12]
A. O'Connell, R. Koeppe Ⅱ, and O. Andersen, Kinetics of gramicidin channel formation in lipid bilayer: Transmembrane monomer association,, Science, vol 250, pp.1256-1259 (1990).
DOI: 10.1126/science.1700867
Google Scholar
[13]
M. Schiffer, C. Chang, and F. Stevens, The functions of tryptophan residues in membrane proteins,, Protein Engr., vol. 5, pp.213-214 (1992).
Google Scholar
[14]
J. Killian, I. Salemik, M. dePlanque, G. Lindblom, R. Koeppe Ⅱ, and D. Greathouse, Introduction of nonbilayer structure in diacylphosphatidylcholin model membranes by transmembrane a-helical peptides: Importance of hydrophobic mismatch and proposed role of tryptophan,, Biochemistry, vol. 35, pp.1037-1045 (1996).
DOI: 10.1021/bi9519258
Google Scholar
[15]
P. van der Wel, T. Pott, S. Morein, D. Greathouse, R. Koeppe 2, and K. J.A., Tryptophan-anchored transmembrane peptides promote formation of nonlamelar phases in phosphatidylethanolamine model membranes in a mismatch-dependent manner, Biochemistry, vol. 39, 3124-3133 (2000).
DOI: 10.1021/bi9922594
Google Scholar
[16]
W. –M. Yau, W. Wimlay, K. Gawritsch, and S. White, The preference of tryptophan for membrane interfaces, Biochemistry, vol 37, 14713-14718 (1998).
DOI: 10.1021/bi980809c
Google Scholar
[17]
Maurits R. R. de Planque, Erik Goormaghtigh, Denise V. Greathouse, Roger E. Koeppe Ⅱ, John A. W. Kruijtzer, Rob M. J. Liskamp, Ben de Kruijff, and j. Antoinette Killian, Sensitivity of single membrane-spanning α-helical peptides to hydrophobic mismatch with a lipid bilayer: Effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry, vol 40, 5000-5010 (2001).
DOI: 10.1021/bi000804r
Google Scholar
[18]
Maurits R. R. de Planque, Boyan B. Nonev, Jerouen A. A. Demmers, Denise V. Greathouse, Roger E. Koeppe Ⅱ, Frances Separovic, Anthony Watts, and J. Antoinette Killian. Biochemistry, vol 42, 5341-5348 (2003).
DOI: 10.1021/bi027000r
Google Scholar