[1]
N.T.H. Nhung, B.T.P. Quynh, P.T.T. Thao, H.N. Bich, B.L. Giang, Pretreated Fruit Peels as Adsorbents for Removal of Dyes from Water, Environ. Earth. Sci. 159 (2018).
DOI: 10.1088/1755-1315/159/1/012015
Google Scholar
[2]
I.M. Ahmed, M.S. Gasser, Adsorption study of anionic reactive dye from aqueous solution to Mg–Fe–CO3 layered double hydroxide (LDH), Appl. Surf. Sci. 259 (2012) 650-656.
DOI: 10.1016/j.apsusc.2012.07.092
Google Scholar
[3]
M. Chahkandi, Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle, Mater. Chem. Phys. 202 (2017) 340-351.
DOI: 10.1016/j.matchemphys.2017.09.047
Google Scholar
[4]
C. Ma, F. Wang, C. Zhang, Z. Yu, J. Wei, Z. Yang, Y. Li, Z. Li, M. Zhu, L. Shen, G. Zeng, Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide, Chemosphere 168 (2017) 80-90.
DOI: 10.1016/j.chemosphere.2016.10.063
Google Scholar
[5]
T.V. Tran, Q.T.P. Bui, T.D. Nguyen, N.T.H. Le, L.G. Bach, A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology, Adsorpt. Sci. Technol. 35 (2017) 72-85.
DOI: 10.1177/0263617416669152
Google Scholar
[6]
T.V. Tran, Q.T.P. Bui, T.D. Nguyen, V.T.T. Ho, L.G. Bach, Application of response surface methodology to optimize the fabrication of ZnCl2-activated carbon from sugarcane bagasse for the removal of Cu2+, Water Sci. Technol., 75 (2017) 2047-2055.
DOI: 10.2166/wst.2017.066
Google Scholar
[7]
T.V. Thuan, B.T.P. Quynh, T.D. Nguyen, L.G. Bach, Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel, Surf. Interface. Anal. 6 (2017) 209-217.
DOI: 10.1016/j.surfin.2016.10.007
Google Scholar
[8]
D.W. Kim, L.G. Bach, S.S. Hong, C. Park, K.T. Lim, A Facile Route towards the Synthesis of Fe3O4/Graphene Oxide Nanocomposites for Environmental Applications, Mol. Cryst. Liq. Cryst., 599 (2014) 43-50.
DOI: 10.1080/15421406.2014.935919
Google Scholar
[9]
V.V. Ilyasova, L.G. Bach, A.V. Ilyasov, T.P. Zhdanova, G.A. Geguzina, H.V. Phuc, N.N. Hieu, C.V. Nguyen, K.D. Pham, Superlattices and Microstructures 123 (2018).
DOI: 10.1016/j.spmi.2018.09.024
Google Scholar
[10]
L.G. Bach, M.R. Islam, X.T. Cao, J.M. Park, K.T. Lim, A novel photoluminescent nanohybrid of poly (ε-caprolactone) grafted Mg/Al layered double hydroxides and Tb3+ ions: synthesis and characterization, J. Alloy. Compd. 582 (2014).
DOI: 10.1016/j.jallcom.2013.07.186
Google Scholar
[11]
Z. Tafazoli, M.S. Tehrani, S.W. Husain, P.A. Azar, Ionic liquid grafted on layered double hydroxide nanomaterial as a hydrophobic/ion-exchange adsorbent for efficient removal of azo dye, Desalin. Water. Treat. 99 (2017) 322-329.
DOI: 10.5004/dwt.2017.21697
Google Scholar
[12]
S. Yanming, L. Dongbin, L. Shifeng, F. Lihui, C. Shuai, M.A. Haque, Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide, Arab. J. Chem. 10 (2017) S2295-S2301.
DOI: 10.1016/j.arabjc.2013.08.005
Google Scholar
[13]
K.M. Parida, L. Mohapatra, Carbonate intercalated Zn/Fe layered double hydroxide: A novel photocatalyst for the enhanced photo degradation of azo dyes, Chem. Eng. J. 179 (2012) 131-139.
DOI: 10.1016/j.cej.2011.10.070
Google Scholar
[14]
M. Foroughi-Dahr, H. Abolghasemi, M. Esmail, A. Shojamoradi, and H. Fatoorehchi, On the characteristics of thin-layer drying models for intermittent drying of rough rice, Chem. Eng. Commun. 202 (2015) 1024-1035.
DOI: 10.1080/00986445.2014.900049
Google Scholar
[15]
G. Annadurai, R.S. Juang, D.J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater., 92 (2002) 263-274.
DOI: 10.1016/s0304-3894(02)00017-1
Google Scholar
[16]
V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Adsorption of congo red by three Australian kaolins, Appl. Clay. Sci., 43 (2009) 465-472.
DOI: 10.1016/j.clay.2008.11.008
Google Scholar
[17]
Y. Zhai, J. Zhai, M. Zhou, and S. Dong. Journal Material Chemistry, 19 (2009).
Google Scholar
[18]
L. Wang and A. Wang, Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite, J. Hazard. Mater., 147 (2007) 979-985.
DOI: 10.1016/j.jhazmat.2007.01.145
Google Scholar
[19]
S. Rouf, M. Nagapadma, R.R. Rao, International Journal of Engineering Research and Applications, 5 (2015) 75-82.
Google Scholar
[20]
I.D. Mall, V.C. Srivastava, N. Agarwal, and I. Mishra, Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses, Chemosphere, 61 (2005) 492-501.
DOI: 10.1016/j.chemosphere.2005.03.065
Google Scholar
[21]
K. Bhattacharrya, and A. Sharma, Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions, J. Environ. Manage., 71 (2004) 217-229.
DOI: 10.1016/j.jenvman.2004.03.002
Google Scholar
[22]
P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, and S. Sivanesan, Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kintics and thermodynamics of interactions. Desalin. Water. Treat., 261 (2010) 52-60.
DOI: 10.1016/j.desal.2010.05.032
Google Scholar
[23]
S. Sinha, S. S. Behera, S. Das, A. Basu, R. K. Mohapatra, B. M. Murmu, N. K. Dhal, S. K. Tripathy, and P. K. Parhi, Removal of Congo Red dye from aqueous solution using Amberlite IRA-400 in batch and fixed bed reactors, Chem. Eng. Commun., 205 (2018) 432-444.
DOI: 10.1080/00986445.2017.1399366
Google Scholar
[24]
F.A. Pavan, S.L.P. Dias, E.C. Lima, E.V. Benvenutti, Removal of Congo red from aqueous solution by anilinepropylsilica xerogel, Dyes. Pigm. 76 (2008) 64-69.
DOI: 10.1016/j.dyepig.2006.08.027
Google Scholar