Extraction and Determination of Antioxidant Activity of Vietnamese Butterfly Pea (Clitoria ternatia L.)

Article Preview

Abstract:

The objective of this study was to determine the optimal value of factors affecting the antioxidant activity extraction of antioxidant activity of butterfly pea flowers. The investigated factors included extraction temperatures (30, 40, 50, 60, 70 and 80°C), extraction time (30, 60, 90, 120 and 150 minutes) and solid to solvent ratio (1:05, 1:10, 1:20, 1:40 and 1:50 g/mL). The efficiency of extraction was evaluated based on antioxidant activities which were measured by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay and ferric reducing antioxidant power assay (FRAP). The results showed that when the extraction process was performed at temperatures of 60°C, the resulting extracts with highest DPPH antioxidant activity (575.10 μmolTE/L) and FRAP (1093.83 μmolTE/L) was obtained. Considering the effect of extraction time on antioxidant activities of butterfly pea, time range of 30–90 minutes led to highest DPPH values while extracts with highest FRAP power were collected after 120 minutes. Moreover, decreasing solid-to-solvent ratio resulted in the decline in antioxidant activities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-211

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.P.T. Nhan, T.T. Hien, L.T.H. Nhan, P.N.Q. Anh, L.T. Huy, N.T.C. Trinh, D.T. Nguyen, L.G. Bach, Solid State Phenomena, 279 (2018).

DOI: 10.4028/www.scientific.net/ssp.279.235

Google Scholar

[2] Thien Hien Tran, Le Ke Ha, Duy Chinh Nguyen, Tan Phat Dao, Le Thi Hong Nhan, Dai Hai Nguyen, Trinh Duy Nguyen, Dai-Viet N. Vo, Quoc Toan Tran and Long Giang Bach, Processes 7(2019).

DOI: 10.51199/vjsel.2022.4.10

Google Scholar

[3] T.T. Hien, N.P.T. Nhan, D.T. Nguyen, V.T.T. Ho, L.G. Bach, Solid State Phenomena, 279(2018).

Google Scholar

[4] P. K. Mukherjee, V. Kumar, N. S. Kumar, and M. Heinrich, J. Ethnopharmacol., 120(2008).

Google Scholar

[5] J.-M. Kong, L.-S. Chia, N.-K. Goh, T.-F. Chia, and R. Brouillard, Phytochemistry, 64(2003).

Google Scholar

[6] M. López-Lázaro, Mini Rev. Med. Chem., 9 (2009).

Google Scholar

[7] P. Chayaratanasin, M. A. Barbieri, N. Suanpairintr, and S. Adisakwattana, Altern. Med., 15(2015).

Google Scholar

[8] K. Kazuma, N. Noda, and M. Suzuki Phytochemistry, 64(2003).

Google Scholar

[9] L. F. Reyes, J. C. Miller, and L. Cisneros-Zevallos, Am. J. Potato Res.,82(2005).

Google Scholar

[10] M. M. Ramírez-Rodrigues, M. O. Balaban, M. R. Marshall, and R. L. Rouseff, J. Food Sci., 76(2011).

Google Scholar

[11] A. Braca, N. De Tommasi, L. Di Bari, C. Pizza, M. Politi, and I. Morelli, J. Nat. Prod., 64(2001).

DOI: 10.1021/np0100845

Google Scholar

[12] D. Ojeda, E. Jiménez-Ferrer, A. Zamilpa, A. Herrera-Arellano, J. Tortoriello, and L. Alvarez, J. Ethnopharmacol., 127(2010).

Google Scholar

[13] Y. Y. Thoo, S. K. Ho, J. Y. Liang, C. W. Ho, and C. P. Tan. Food Chem., 120(2010).

Google Scholar

[14] X. Chen et al., J. Zhejiang Univ. Sci, 14(2013).

Google Scholar

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, (2013).

Google Scholar

[16] K. Ghafoor, Y. H. Choi, J. Y. Jeon, and I. H. Jo, J. Agric. Food Chem., 57 (2009).

Google Scholar

[17] A. Mokrani and K. Madani, Sep. Purif. Technol., 162 (2016).

Google Scholar

[18] P. N. Prasad and D. R. Ulrich. Springer Science & Business Media (2012).

Google Scholar

[19] M. A. Al-Farsi and C. Y. Lee, Food Chem., 108 (2008).

Google Scholar

[20] P. R. Gogate, Chem. Eng. Process., 47 (2008).

Google Scholar

[21] V. M. Kulkarni and V. K. Rathod, Biotechnol. Reports, 6 (2015).

Google Scholar