Effects of Extraction Conditions on Antioxidant Activities of Roselle (Hibiscus sabdariffa L.) Extracts

Article Preview

Abstract:

The objective of this study was to determine the optimal value of factors affecting the extraction of antioxidant activity of Roselle calyces. The investigated factors included extraction temperatures (30, 40, 50, 60, 70 and 80°C), extraction time (30, 60, 90, 120 and 150 minutes) and solid to solvent ratio (1:5, 1:10, 1:20, 1:40 and 1:50 g/mL). The efficiency of extraction was evaluated based on antioxidant activities which were measured by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay, ferric reducing antioxidant power assay (FRAP). The results showed that when the extraction temperature range of 70–80°C, DPPH free radical scavenging and FRAP were highest with 677.47–725.81 μmolTE/L and 4186.91–4391.62 μmolTE/L, respectively. For the extraction time from 120 to 150 minutes, the resulting extracts with highest FRAP and DPPH free radical scavenging antioxidant capacity were obtained. Meanwhile, the antioxidant activity tended to decrease as the solvent/solid ratio increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

201-206

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.T Hien, L.K. Ha, N.D. Chinh, D.T. Phat, L.T.H. Nhan, N.D. Hai, N.D. Trinh, N.V.D. Viet, T.Q. Toan and B.L. Giang, The Study on Extraction Process and Analysis of Components in Essential Oils of Black Pepper (Piper nigrum L.) Seeds Harvested in Gia Lai Province, Vietnam Processes 7 (2019) 56.

DOI: 10.3390/pr7020056

Google Scholar

[2] T.T. Hien, N.P.T. Nhan, D.T. Nguyen, V.T.T. Ho, L.G. Bach, Optimizing the Pomelo Oils Extraction Process by Microwave-Assisted Hydro-Distillation Using Soft Computing Approaches Solid State Phenomena, 279 (2018) 217-221.

DOI: 10.4028/www.scientific.net/ssp.279.217

Google Scholar

[3] N.P.T. Nhan, T.T. Hien, L.T.H. Nhan, P.N.Q. Anh, L.T. Huy, N.T.C. Trinh, D.T. Nguyen, L.G. Bach, Application of Response Surface Methodology to Optimize the Process of Saponification Reaction from Coconut Oil in Ben Tre – Vietnam, Solid State Phenomena, 279 (2018) 235-239.

DOI: 10.4028/www.scientific.net/ssp.279.235

Google Scholar

[4] I.D. Rocha, B. Bonnlaender, H. Sievers, I. Pischel, M. Heinrich, Hibiscus sabdariffa L. – A phytochemical and pharmacological review, Food Chem 165 (2014).

DOI: 10.1016/j.foodchem.2014.05.002

Google Scholar

[5] D.L. McKay, C. Y. O. Chen, E. Saltzman, and J. B. Blumberg, Hibiscus sabdariffa L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults, J. Nutr 140 (2009) 298-303.

DOI: 10.3945/jn.109.115097

Google Scholar

[6] M.N. Clifford, K. L. Johnston, S. Knight, and N. Kuhnert, Hierarchical scheme for LC-MSn identification of chlorogenic acids, J. Agric. Food Chem,51 (2003) 2900-2911.

DOI: 10.1021/jf026187q

Google Scholar

[7] A. Sharaf, The pharmacological characteristics of Hibiscus sabdariffa L. Planta Med 10 (1962).

Google Scholar

[8] M.P.K. Choi, K.K.C. Chan, H.W. Leung, and C.W. Huie, Pressurized liquid extraction of active ingredients (ginsenosides) from medicinal plants using non-ionic surfactant solutions, J. Chromatogr. A, 983 (2003) 153-162.

DOI: 10.1016/s0021-9673(02)01649-7

Google Scholar

[9] E.O. Farombi and A. Fakoya, Free radical scavenging and antigenotoxic activities of natural phenolic compounds in dried flowers of Hibiscus sabdariffa L., Mol. Nutr. Food Res 49 (2005) 1120-1128.

DOI: 10.1002/mnfr.200500084

Google Scholar

[10] M.T. Olalye and J.B.T. Rocha, Commonly used tropical medicinal plants exhibit distinct in vitro antioxidant activities against hepatotoxins in rat liver, Exp. Toxicol. Pathol 58 (2007) 433-438.

DOI: 10.1016/j.etp.2007.01.002

Google Scholar

[11] A.R. Cavalcante Braga, D.C. Murador, Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research, J. Food Compos. Anal., 68 (2018) 31-40.

DOI: 10.1016/j.jfca.2017.07.031

Google Scholar

[12] A. Braca, N. De Tommasi, L. Di Bari, C. Pizza, M. Politi, and I. Morelli, Antioxidant principles from Bauhinia tarapotensis, J. Nat. Prod, 64 (2001) 892-895.

DOI: 10.1021/np0100845

Google Scholar

[13] Y. Y. Thoo, S. K. Ho, J. Y. Liang, C. W. Ho, and C. P. Tan, Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia), Food Chem., 120 (2010) 290-295.

DOI: 10.1016/j.foodchem.2009.09.064

Google Scholar

[14] H. Li, Z. Deng, T. Wu, R. Liu, S. Loewen, and R. Tsao, Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes, Food Chem, 130 (2012) 928-936.

DOI: 10.1016/j.foodchem.2011.08.019

Google Scholar

[15] N. E. Durling, Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures, Food Chem 101 (2007) 1417-1424.

DOI: 10.1016/j.foodchem.2006.03.050

Google Scholar

[16] E. M. Silva, H. Rogez, and Y. Larondelle, Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology, Sep. Purif. Technol 55(2007).

DOI: 10.1016/j.seppur.2007.01.008

Google Scholar

[17] A.A. Mariod, R. M. Ibrahim, M. Ismail, and N. Ismail, Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake, Food Chem 116 (2009) 306-312.

DOI: 10.1016/j.foodchem.2009.02.051

Google Scholar

[18] M. Naczk and F. Shahidi, Extraction and analysis of phenolics in food, J. Chromatogr 1054 (2004) 95-111.

Google Scholar

[19] P.-J. Tsai, J. McIntosh, P. Pearce, B. Camden, B. R. Jordan, Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract, Food Res. Int 35 (2002) 351-356.

DOI: 10.1016/s0963-9969(01)00129-6

Google Scholar

[20] K. Ghafoor, Y. H. Choi, J. Y. Jeon, and I. H. Jo, Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds, J. Agric. Food Chem., 57 (2009) 4988-4994.

DOI: 10.1021/jf9001439

Google Scholar

[21] J. Zhou, Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis, PLoS One, 8 (2013) e61627.

DOI: 10.1371/journal.pone.0061627

Google Scholar

[22] P. N. Prasad and D. R. Ulrich Springer Science & Business Media, (2012).

Google Scholar

[23] M. A. Al-Farsi and C. Y. Lee, Optimization of phenolics and dietary fibre extraction from date seeds, Food Chem., 108 (2008) 977-985.

DOI: 10.1016/j.foodchem.2007.12.009

Google Scholar