[1]
Simon I, Bârsan N, Bauer M and Weimar U, Micromachined metal oxide gas sensors: opportunities to improve sensor performance, 2001 Sensors and Actuators, B: Chemical 73 (1) 1-26.
DOI: 10.1016/s0925-4005(00)00639-0
Google Scholar
[2]
Yamazoe N and Shimanoe K, New perspectives of gas sensor technology, 2009 Sensors and Actuators, B: Chemical 138 (1) 100-107.
DOI: 10.1016/j.snb.2009.01.023
Google Scholar
[3]
Environmental Sensors. Available online: https://www.sensirion.com/en/environmental-sensors/gas-sensors/ (accessed on 30 April 2019).
Google Scholar
[4]
Bosch Sensortec. Available online: https://www.bosch-sensortec.com/bst/products/all_products/bme680 (accessed on 30 April 2019).
Google Scholar
[5]
Figaro sensor TGS8100. Available online: http://www.figarosensor.com/products/entry/tgs8100.html (accessed on 30 April 2019).
Google Scholar
[6]
Ohnishi H, Ultra Low Power Thin Film MEMS Gas Sensor for Battery operated Gas Alarm, 2018 Proceedings of 17th International Meeting on Chemical Sensors - IMCS 2018 95-96.
DOI: 10.5162/imcs2018/gs2.1
Google Scholar
[7]
Kyocera ceramic hybrid packages. Available online: https://global.kyocera.com/prdct/semicon/semi/std_pkg/pdf/kyocera-pkg-ecsmd-e-171f.pdf (accessed on 30 April 2019).
Google Scholar
[8]
Kim I-D, Rothschild A and Tuller H L, Advances and new directions in gas-sensing devices, 2013 ActaMaterialia 61 (3) 974-1000.
DOI: 10.1016/j.actamat.2012.10.041
Google Scholar
[9]
Gaiardo A, Fabbri B, Giberti A, Guidi V, Bellutti P, Malagù C, Valt M, Pepponi G, Gherardi S, Zonta G, Martucci A, Sturaro M, Landini N, ZnO and Au/ZnO thin films: Room-temperature chemoresistive properties for gas sensing applications, 2016 Sensors and Actuators, B: Chemical 237 1085-1094.
DOI: 10.1016/j.snb.2016.07.134
Google Scholar
[10]
Li H-Y, Yoon J-W, Lee C-S, Lim K, Yoon J-W and Lee J-H, Visible light assisted NO2 sensing at room temperature by CdS nanoflake array, 2018 Sensors and Actuators, B: Chemical 255 2963-2970.
DOI: 10.1016/j.snb.2017.09.118
Google Scholar
[11]
Kim T-H, Kwak C-H, and Lee J-H, NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm-level p-Xylen, 2017 ACS Applied Materials and Interfaces 9 (37) 32034-32043.
DOI: 10.1021/acsami.7b10294
Google Scholar
[12]
Suh J M, Shim Y-S, Kim D H, Sohn W, Jung Y, Lee S Y, Choi S, Kim Y H, Jeon J-M, Hong K, Kwon K C, Park S Y, Kim C, Lee J-H, Kang C-Y and Jang H W, Synergetically Selective Toluene Sensing in Hematite-Decorated Nickel Oxide Nanocorals, 2017 Advanced Materials Technologies 2 (3) article 1600259.
DOI: 10.1002/admt.201600259
Google Scholar
[13]
Jeong S-Y, Yoon J-W, Kim T-H, Jeong H-M, Lee C-S, Chan Kang Y and Lee J-H, Ultra-selective detection of sub-ppm-level benzene using Pd-SnO2 yolk-shell micro-reactors with a catalytic Co3O4 overlayer for monitoring air quality, 2017 Journal of Materials Chemistry A 5 (4) 1446-1454.
DOI: 10.1039/c6ta09397c
Google Scholar
[14]
Jeong H-M, Jeong S-Y, Kim J-H, Kim B-Y, Kim J-S, Abdel-Hady F, Wazzan A A, Al-Turaif H A, Jang H W and Lee J-H, Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides, 2017 ACS Applied Materials and Interfaces 9 (47) 41397-41404.
DOI: 10.1021/acsami.7b13998
Google Scholar
[15]
Graunke T, Tarantik K R, Schmitt K, Raible S and Wöllenstein J, Investigation of active heated gas filters on metal oxide gas sensors using a microstructured stacked-die setup, 2018 Proceedings of 17th International Meeting on Chemical Sensors - IMCS 2018 651-652.
DOI: 10.5162/imcs2018/p1sm.7
Google Scholar
[16]
Güntner A T, Abegg S, Wegner K and Pratsinis S E, Zeolite membranes for highly selective formaldehyde sensors, 2018 Sensors and Actuators, B: Chemical 257 916-923.
DOI: 10.1016/j.snb.2017.11.035
Google Scholar
[17]
Graunke T, Schmitt K and Wöllenstein J, Organic Membranes for Selectivity Enhancement of Metal Oxide Gas Sensors, 2016 Journal of Sensors 24 article 2435945.
DOI: 10.1155/2016/2435945
Google Scholar
[18]
Bierer B, Kneer J, Wöllenstein J and Palzer S, MEMS-based platform optimized for inkjet printing of nano-sized, gas sensitive functional metal oxides to enable the measurement of gas induced changes of the heating power, 2015 Proceedings of SPIE - The International Society for Optical Engineering 9517 article 951714.
DOI: 10.1117/12.2178976
Google Scholar
[19]
Karpova E, Mironov S, Suchkov A, Karelin A, Karpov E E and Karpov E F, Increase of catalytic sensors stability, 2014 Sensors and Actuators, B: Chemical 197 358-363.
DOI: 10.1016/j.snb.2014.03.016
Google Scholar
[20]
Leidinger M, Rieger M, Sauerwald T, Alépée C and Schütze A, Integrated pre-concentrator gas sensor microsystem for ppb level benzene detection, 2016 Sensors and Actuators, B: Chemical 236 988-996.
DOI: 10.1016/j.snb.2016.04.064
Google Scholar
[21]
MP-7217 Datasheet. Available online: https://www.sgxsensortech.com/content/uploads/2014/07/DS-0165-MP-7217-Datasheet-V5.pdf (accessed on 30 April 2019).
Google Scholar
[22]
Vasiliev A V, Pisliakov A V, Sokolov A V, Samotaev N N, Soloviev S A, Oblov K, Guarnieri V, Lorenzelli L, Brunelli J, Maglione A, Lipilin A S, Mozalev A and Legin A V, Non-silicon MEMS platforms for gas sensors, 2016 Sensors and Actuators, B: Chemical 224 700-713.
DOI: 10.1016/j.snb.2015.10.066
Google Scholar
[23]
Vasiliev A A, Lipilin A S, Mozalev A M, Lagutin A S, Pisliakov A V, Zaretskiy N P, Samotaev N N, Sokolov A V, Gas sensors based on MEMS structures made of ceramic ZrO2/Y 2O3 material, 2011 Proceedings of SPIE - The International Society for Optical Engineering, 8066, article 80660N.
DOI: 10.1117/12.887500
Google Scholar
[24]
Vasiliev A A, Pavelko R G, Gogish-Klushin S Yu, Kharitonov D Yu, Gogish-Klushina O S, Sokolov A V, Samotaev N N, Alumina MEMS platform for impulse semiconductor and IR optic gas sensors, 2007, Proceedings of TRANSDUCERS and EUROSENSORS '07 - 4th International Conference on Solid-State Sensors, Actuators and Microsystems, article 4300563 2035-2037.
DOI: 10.1109/sensor.2007.4300563
Google Scholar
[25]
Vasiliev A A, Sokolov A V, Legin A V, Samotaev N N, Oblov K Yu, Kim V P, Tkachev, S V, Gubin S P, Potapov G N, Kokhtina Yu V, Nisan A V, Additive technologies for ceramic MEMS sensors, 2015, Procedia Engineering, 120 1087-1090.
DOI: 10.1016/j.proeng.2015.08.775
Google Scholar
[26]
Samotaev N N, Miniaturized ceramic platform for metal oxide gas sensors array, 2016, IOP Conference Series: Materials Science and Engineering, 151 (1), article 012020.
DOI: 10.1088/1757-899x/151/1/012020
Google Scholar
[27]
Biro F, Ducso C, Hajnal Z, Pap A E, Barsony I, Optimisation of low dissipation micro-hotplates - Thermo-mechanical design and characterisation, 2013, Proceedings of THERMINIC 2013 - 19th International Workshop on Thermal Investigations of ICs and Systems, 116-121.
DOI: 10.1109/therminic.2013.6675223
Google Scholar
[28]
Samotaev N N, Vasiliev A A, Podlepetsky B I, Sokolov A V and Pisliakov A V, The mechanism of the formation of selective response of semiconductor gas sensor in mixture of CH4/H2/CO with air, 2007 Sensors and Actuators, B: Chemical 127 (1) 242-247.
DOI: 10.1016/j.snb.2007.07.022
Google Scholar