Technology of SMD MOX Gas Sensors Rapid Prototyping

Article Preview

Abstract:

This work discusses the design of flexible laser micromilling technology for fast prototyping of metal oxide based (MOX) gas sensors in SMD packages as an alternative to traditional silicon clean room technologies. By laser micromilling technology it is possible to fabricate custom Micro Electro Mechanical System (MEMS) microhotplate platform and also packages for MOX sensor, that gives complete solution for its integration in devices using IoT conception. The tests described in the work show the attainability of the stated results for the fabrication of microhotplates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-237

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Simon I, Bârsan N, Bauer M and Weimar U, Micromachined metal oxide gas sensors: opportunities to improve sensor performance, 2001 Sensors and Actuators, B: Chemical 73 (1) 1-26.

DOI: 10.1016/s0925-4005(00)00639-0

Google Scholar

[2] Yamazoe N and Shimanoe K, New perspectives of gas sensor technology, 2009 Sensors and Actuators, B: Chemical 138 (1) 100-107.

DOI: 10.1016/j.snb.2009.01.023

Google Scholar

[3] Environmental Sensors. Available online: https://www.sensirion.com/en/environmental-sensors/gas-sensors/ (accessed on 30 April 2019).

Google Scholar

[4] Bosch Sensortec. Available online: https://www.bosch-sensortec.com/bst/products/all_products/bme680 (accessed on 30 April 2019).

Google Scholar

[5] Figaro sensor TGS8100. Available online: http://www.figarosensor.com/products/entry/tgs8100.html (accessed on 30 April 2019).

Google Scholar

[6] Ohnishi H, Ultra Low Power Thin Film MEMS Gas Sensor for Battery operated Gas Alarm, 2018 Proceedings of 17th International Meeting on Chemical Sensors - IMCS 2018 95-96.

DOI: 10.5162/imcs2018/gs2.1

Google Scholar

[7] Kyocera ceramic hybrid packages. Available online: https://global.kyocera.com/prdct/semicon/semi/std_pkg/pdf/kyocera-pkg-ecsmd-e-171f.pdf (accessed on 30 April 2019).

Google Scholar

[8] Kim I-D, Rothschild A and Tuller H L, Advances and new directions in gas-sensing devices, 2013 ActaMaterialia 61 (3) 974-1000.

DOI: 10.1016/j.actamat.2012.10.041

Google Scholar

[9] Gaiardo A, Fabbri B, Giberti A, Guidi V, Bellutti P, Malagù C, Valt M, Pepponi G, Gherardi S, Zonta G, Martucci A, Sturaro M, Landini N, ZnO and Au/ZnO thin films: Room-temperature chemoresistive properties for gas sensing applications, 2016 Sensors and Actuators, B: Chemical 237 1085-1094.

DOI: 10.1016/j.snb.2016.07.134

Google Scholar

[10] Li H-Y, Yoon J-W, Lee C-S, Lim K, Yoon J-W and Lee J-H, Visible light assisted NO2 sensing at room temperature by CdS nanoflake array, 2018 Sensors and Actuators, B: Chemical 255 2963-2970.

DOI: 10.1016/j.snb.2017.09.118

Google Scholar

[11] Kim T-H, Kwak C-H, and Lee J-H, NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm-level p-Xylen, 2017 ACS Applied Materials and Interfaces 9 (37) 32034-32043.

DOI: 10.1021/acsami.7b10294

Google Scholar

[12] Suh J M, Shim Y-S, Kim D H, Sohn W, Jung Y, Lee S Y, Choi S, Kim Y H, Jeon J-M, Hong K, Kwon K C, Park S Y, Kim C, Lee J-H, Kang C-Y and Jang H W, Synergetically Selective Toluene Sensing in Hematite-Decorated Nickel Oxide Nanocorals, 2017 Advanced Materials Technologies 2 (3) article 1600259.

DOI: 10.1002/admt.201600259

Google Scholar

[13] Jeong S-Y, Yoon J-W, Kim T-H, Jeong H-M, Lee C-S, Chan Kang Y and Lee J-H, Ultra-selective detection of sub-ppm-level benzene using Pd-SnO2 yolk-shell micro-reactors with a catalytic Co3O4 overlayer for monitoring air quality, 2017 Journal of Materials Chemistry A 5 (4) 1446-1454.

DOI: 10.1039/c6ta09397c

Google Scholar

[14] Jeong H-M, Jeong S-Y, Kim J-H, Kim B-Y, Kim J-S, Abdel-Hady F, Wazzan A A, Al-Turaif H A, Jang H W and Lee J-H, Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides, 2017 ACS Applied Materials and Interfaces 9 (47) 41397-41404.

DOI: 10.1021/acsami.7b13998

Google Scholar

[15] Graunke T, Tarantik K R, Schmitt K, Raible S and Wöllenstein J, Investigation of active heated gas filters on metal oxide gas sensors using a microstructured stacked-die setup, 2018 Proceedings of 17th International Meeting on Chemical Sensors - IMCS 2018 651-652.

DOI: 10.5162/imcs2018/p1sm.7

Google Scholar

[16] Güntner A T, Abegg S, Wegner K and Pratsinis S E, Zeolite membranes for highly selective formaldehyde sensors, 2018 Sensors and Actuators, B: Chemical 257 916-923.

DOI: 10.1016/j.snb.2017.11.035

Google Scholar

[17] Graunke T, Schmitt K and Wöllenstein J, Organic Membranes for Selectivity Enhancement of Metal Oxide Gas Sensors, 2016 Journal of Sensors 24 article 2435945.

DOI: 10.1155/2016/2435945

Google Scholar

[18] Bierer B, Kneer J, Wöllenstein J and Palzer S, MEMS-based platform optimized for inkjet printing of nano-sized, gas sensitive functional metal oxides to enable the measurement of gas induced changes of the heating power, 2015 Proceedings of SPIE - The International Society for Optical Engineering 9517 article 951714.

DOI: 10.1117/12.2178976

Google Scholar

[19] Karpova E, Mironov S, Suchkov A, Karelin A, Karpov E E and Karpov E F, Increase of catalytic sensors stability, 2014 Sensors and Actuators, B: Chemical 197 358-363.

DOI: 10.1016/j.snb.2014.03.016

Google Scholar

[20] Leidinger M, Rieger M, Sauerwald T, Alépée C and Schütze A, Integrated pre-concentrator gas sensor microsystem for ppb level benzene detection, 2016 Sensors and Actuators, B: Chemical 236 988-996.

DOI: 10.1016/j.snb.2016.04.064

Google Scholar

[21] MP-7217 Datasheet. Available online: https://www.sgxsensortech.com/content/uploads/2014/07/DS-0165-MP-7217-Datasheet-V5.pdf (accessed on 30 April 2019).

Google Scholar

[22] Vasiliev A V, Pisliakov A V, Sokolov A V, Samotaev N N, Soloviev S A, Oblov K, Guarnieri V, Lorenzelli L, Brunelli J, Maglione A, Lipilin A S, Mozalev A and Legin A V, Non-silicon MEMS platforms for gas sensors, 2016 Sensors and Actuators, B: Chemical 224 700-713.

DOI: 10.1016/j.snb.2015.10.066

Google Scholar

[23] Vasiliev A A, Lipilin A S, Mozalev A M, Lagutin A S, Pisliakov A V, Zaretskiy N P, Samotaev N N, Sokolov A V, Gas sensors based on MEMS structures made of ceramic ZrO2/Y 2O3 material, 2011 Proceedings of SPIE - The International Society for Optical Engineering, 8066, article 80660N.

DOI: 10.1117/12.887500

Google Scholar

[24] Vasiliev A A, Pavelko R G, Gogish-Klushin S Yu, Kharitonov D Yu, Gogish-Klushina O S, Sokolov A V, Samotaev N N, Alumina MEMS platform for impulse semiconductor and IR optic gas sensors, 2007, Proceedings of TRANSDUCERS and EUROSENSORS '07 - 4th International Conference on Solid-State Sensors, Actuators and Microsystems, article 4300563 2035-2037.

DOI: 10.1109/sensor.2007.4300563

Google Scholar

[25] Vasiliev A A, Sokolov A V, Legin A V, Samotaev N N, Oblov K Yu, Kim V P, Tkachev, S V, Gubin S P, Potapov G N, Kokhtina Yu V, Nisan A V, Additive technologies for ceramic MEMS sensors, 2015, Procedia Engineering, 120 1087-1090.

DOI: 10.1016/j.proeng.2015.08.775

Google Scholar

[26] Samotaev N N, Miniaturized ceramic platform for metal oxide gas sensors array, 2016, IOP Conference Series: Materials Science and Engineering, 151 (1), article 012020.

DOI: 10.1088/1757-899x/151/1/012020

Google Scholar

[27] Biro F, Ducso C, Hajnal Z, Pap A E, Barsony I, Optimisation of low dissipation micro-hotplates - Thermo-mechanical design and characterisation, 2013, Proceedings of THERMINIC 2013 - 19th International Workshop on Thermal Investigations of ICs and Systems, 116-121.

DOI: 10.1109/therminic.2013.6675223

Google Scholar

[28] Samotaev N N, Vasiliev A A, Podlepetsky B I, Sokolov A V and Pisliakov A V, The mechanism of the formation of selective response of semiconductor gas sensor in mixture of CH4/H2/CO with air, 2007 Sensors and Actuators, B: Chemical 127 (1) 242-247.

DOI: 10.1016/j.snb.2007.07.022

Google Scholar