Parameter Studies of Ceramic MEMS Microhotplates Fabricated by Laser Micromilling Technology

Article Preview

Abstract:

This paper presents a modeling of technology aspects for fabrication ceramic microelectromechanical systems (MEMS) microhotplate and surface mounting device (SMD) packaging for (MOX) gas sensors applications. Innovative claims include: demonstration of flexible opportunities for new fabrication process flows based on laser micromilling tech; modeling of power consumption MEMS microhotplate depending on the thickness and topology; demonstration of necessity changing thick film technology of metallization to vacuum sputtering by reducing of power consumption. The results show possibility to fast fabrication of different topologies for ceramic MEMS microhotplate in form-factor of SOT-23 type SMD package.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-243

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Vasiliev A V, Pisliakov A V, Sokolov A V, Samotaev N N, Soloviev S A, Oblov K, Guarnieri V, Lorenzelli L, Brunelli J, Maglione A, Lipilin A S, Mozalev A and Legin A V, Non-silicon MEMS platforms for gas sensors, 2016 Sensors and Actuators, B: Chemical 224 700-713.

DOI: 10.1016/j.snb.2015.10.066

Google Scholar

[2] Oblov K, Ivanova A, Soloviev S, Samotaev N, Lipilin A, Vasiliev A and Sokolov A, Fabrication of microhotplates based on laser micromachining of zirconium oxide, 2015 Physics Procedia 72 485-489.

DOI: 10.1016/j.phpro.2015.09.057

Google Scholar

[3] Vasiliev A A, Pavelko R G, Gogish-Klushin S Y, Kharitonov D Y, Gogish-Klushina O S, Sokolov A V, Pisliakov A V and Samotaev N N, Alumina MEMS platform for impulse semiconductor and IR optic gas sensors, 2008 Sensors and Actuators, B: Chemical 132 (1) 216-223.

DOI: 10.1016/j.snb.2008.01.043

Google Scholar

[4] Vasiliev A A, Sokolov A V, Pisliakov A V, Oblov K Y, Samotaev N N, Kim V P, Tkachev S V, Gubin S P, Potapov G N, Kokhtina Y V and Nisan A V, Automotive MEMS sensors based on additive technologies, 2016 IOP Conference Series: Materials Science and Engineering 151 (1) article 012024.

DOI: 10.1088/1757-899x/151/1/012024

Google Scholar

[5] Oblov K, Ivanova A, Soloviev S, Samotaev N, Vasiliev A and Sokolov A, Technology for fast fabrication of glass microhotplates based on the laser processing, 2015 Physics Procedia 72 465-469.

DOI: 10.1016/j.phpro.2015.09.094

Google Scholar

[6] Karpov E, Karpov E, Suchkov A, Mironov S, Baranov A, Sleptsov V, Energy efficient planar catalytic sensor for methane measurement, 2013 Sensors and Actuators A: Physical 194 176-180.

DOI: 10.1016/j.sna.2013.01.057

Google Scholar

[7] Liu Q, Yao J, Wu Y, Wang Y, Ding G, Two operating modes of palladium film hydrogen sensor based on suspended micro hotplate, International Journal of Hydrogen Energy 44 11259-11265.

DOI: 10.1016/j.ijhydene.2019.02.228

Google Scholar

[8] Monereo O, Casals O, Prades J D, Cirera A, Self-heating in pulsed mode for signal quality improvement: Application to carbon nanostructures-based sensors, Sensors and Actuators, B: Chemical 226 254-265.

DOI: 10.1016/j.snb.2015.11.049

Google Scholar

[9] Samotaev N, Oblov K, Pisliakov A, Volkov N, Ivanova A, Gorshkova A and Zibilyuk N, Technology of Rapid Prototyping SMD MOX Gas Sensors, 2018 Proceedings of 17th International Meeting on Chemical Sensors - IMCS (2018).

DOI: 10.3390/proceedings2130934

Google Scholar

[10] Samotaev N, Oblov K and Ivanova A, Laser Micromilling Technology as a Key for Rapid Prototyping SMD ceramic MEMS devices, 2018 MATEC Web of Conferences 207 article 04003.

DOI: 10.1051/matecconf/201820704003

Google Scholar

[11] Biró F, Dücso C, Hajnal Z, Riesz F, Pap A E and Bársony I, Thermo-mechanical design and characterization of low dissipation micro-hotplates operated above 500°C, 2015 Microelectronics Journal 45 (12) 1822-1828.

DOI: 10.1016/j.mejo.2014.04.034

Google Scholar