A Flexible Piezoelectric Nanogenerator Based on Free-Standing Polydimethylsiloxane / ZnO Nanowire Hybrid Film

Article Preview

Abstract:

We report a facil and robust strategy for fabricating flexible piezoelectric nanogenerator based on free-standing polydimethylsiloxane (PDMS) / ZnO nanowire (NW) hybrid film. Free-standing hybrid film was fabricated by mechanical exfoliation of ZnO NWs grown on a FR4 substrate. The free-standing ZnO/PDMS hybrid film is robust enough to be transferred into a flexible substrate of polyimide (Kapton) with Au sputtered. The nanogenerator based on the free-standing hybrid film exhibits stable output voltage about 0.7 V and current of 7 nA under pressing conditions. This facil and robust method should hold significant promise applications in efficient energy harvesting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-249

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z.L. Wang, Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires, Nano Energy 13 (2015) 414-422.

DOI: 10.1016/j.nanoen.2015.02.029

Google Scholar

[2] C.K. Jeong, J.H. Han, H. Palneedi, Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film, APL Materials 5 (2017) 074102.

DOI: 10.1063/1.4976803

Google Scholar

[3] U. Khan, R. Hinchet, H. Ryu, Research Update: Nanogenerators for self-powered autonomous wireless sensors, APL Materials 5 (2017) 073803.

DOI: 10.1063/1.4979954

Google Scholar

[4] G. Zhu, A.C. Wang, Y. Liu, Functional electrical stimulation by nanogenerator with 58 V output voltage, Nano Lett. 12 (2012) 3086-3090.

DOI: 10.1021/nl300972f

Google Scholar

[5] X. Pu, M. Liu, L. Li, Efficient charging of li-ion batteries with pulsed output current of triboelectric nanogenerators, Adv. Sci. 3 (2016) 1500255.

DOI: 10.1002/advs.201500255

Google Scholar

[6] X. Pu, L. Li, M. Liu, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators, Adv. Mater. 28 (2016) 98-105.

DOI: 10.1002/adma.201504403

Google Scholar

[7] Y.K. Fuh, S.C. Li, C.Y. Chen, Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection, APL Mater 5 (2017) 074202.

DOI: 10.1063/1.4978913

Google Scholar

[8] Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science. 5771 (2006) 242-246.

DOI: 10.1126/science.1124005

Google Scholar

[9] K. Park, S. Xu, Y. Liu, G. Hwang, S.L. Kang, Z.L. Wang, K.J. Lee, Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates, Nano Lett. 10 (2010) 4939-4943.

DOI: 10.1021/nl102959k

Google Scholar

[10] X. Chen, S. Xu, N. Yao, Y. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers, Nano Lett. 10 (2010) 2133-2137.

DOI: 10.1021/nl100812k

Google Scholar

[11] C. Chang, V.H. Tran, J. Wang, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency, Nano Lett. 10 (2010) 726-731.

DOI: 10.1021/nl9040719

Google Scholar

[12] S. Xu, Y. Yeh, G. Poirier, Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device, Nano Lett. 13 (2013) 2393-2398.

DOI: 10.1021/nl400169t

Google Scholar

[13] S. Lee, R. Hnchet, Y. Lee, Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion, Adv. Funct. Mater. 24 (2014) 1163-1168.

DOI: 10.1002/adfm.201301971

Google Scholar

[14] L.E. Greene, M. Law, J. Goldberger, Low-temperature wafer-scale production of ZnO nanowire arrays, Angew. Chem. Int. Ed. 42 (2003) 3031-3034.

DOI: 10.1002/anie.200351461

Google Scholar

[15] L.E. Greene, M. Law, D.H. Tan, General route to vertical ZnO nanowire arrays using textured ZnO seeds, Nano Lett. 5 (2005) 1231-1236.

DOI: 10.1021/nl050788p

Google Scholar

[16] D.Y. Jung, S.H. Baek, M.R. Hasan, I.K. Park, Performance-enhanced ZnO nanorod-based piezoelectric nanogenerators on double-sided stainless steel foil, Journal of Alloys and Compounds 641 (2015) 163-169.

DOI: 10.1016/j.jallcom.2015.03.066

Google Scholar

[17] W. Deng, L. Jin, B. Zhang, Y. Chen, L. Mao, H. Zhang, W. Yang, A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin, Nanoscale. 8 (2016) 16302-16306.

DOI: 10.1039/c6nr04057h

Google Scholar

[18] M.R. Hasan, S.H. Baek, K.S. Seong, J.H. Kim, I.K. Park, Hierarchical ZnO nanorods on Si micropillar arrays for performance enhancement of piezoelectric nanogenerators, ACS Appl. Mater. Interfaces 7 (2015) 5768-5774.

DOI: 10.1021/am5085379

Google Scholar

[19] L. Gu, N.Y. Cui, L. Cheng, Q. Xu, S. Bai, M.M. Yuan, W.W. Wu, J.M. Liu, Y. Zhao, F. Ma, Y. Qin, Z.L. Wang, Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode, Nano Lett. 13 (2013) 91-94.

DOI: 10.1021/nl303539c

Google Scholar