[1]
J. Zhong, D. Xu, C. Li, Z. Wang, F. Li, L. Wang, Z. Li, Progress in application of metallic beryllium, Mater. China. 33 (2014) 568–575.
Google Scholar
[2]
Y. Zhang, Y. Qin, D. Wu, Z. Xie, A nature and application of beryllium, its alloys and beryllium in alloys, Trans. China Weld. Inst. 22 (2001) 92–96.
Google Scholar
[3]
R. Puchta, A brighter beryllium, Nat. Chem. 3 (2011) 416.
Google Scholar
[4]
J. Zhong, D. Xu, F. Li, Z. Wang, J. He, D. Su, Z. Li, Progress in beryllium and beryllium alloy technology, in: Power Metall. Sci. Technol. Forum, Beijing: High Education Press, ChangSha, 2013: p.97–106.
Google Scholar
[5]
T.A. Tomberlin, Beryllium - a unique material in nuclear applications, in: 36th Int. SAMPE Tech. Conf., Idaho Falls, (2004).
Google Scholar
[6]
E.G. Mohamed, Safety guidelines for space nuclear reactor power and propulsion systems, in: J.N. Pelton, R. Jakhu (Eds.), Sp. Saf. Regul. Stand., Elsevier, 2010: p.319–370.
Google Scholar
[7]
C. Willis, G. Muhrer, Target system neutronics study for NXGENS, Nucl. Instruments Methods Phys. Res. A. 570 (2007) 374–383.
DOI: 10.1016/j.nima.2006.10.212
Google Scholar
[8]
B. Patel, W. Parsons, Operational beryllium handling exeperience at JET, Fusion Eng. Des. 69 (2003) 689–694.
DOI: 10.1016/s0920-3796(03)00098-x
Google Scholar
[9]
B. Spilker, J. Linke, G. Pintsuk, M. Wirtz, Impact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications, Fusion Eng. Des. 109 (2016) 1692–1696.
DOI: 10.1016/j.fusengdes.2015.10.028
Google Scholar
[10]
X. Liu, J. Chen, Y. Lian, J. Wu, Z. Xu, N. Zhang, Q. Wang, X. Duan, Z. Wang, J. Zhong, Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors, J. Nucl. Mater. 442 (2013) S309--S312.
DOI: 10.1016/j.jnucmat.2013.04.088
Google Scholar
[11]
I.B. Kupriyanov, G.N. Nikolaev, G. Gorayev, Progress in development and qualification of beryllium for ITER blanket first wall application in Russian Federation, Fusion Eng. Des. 124 (2017) 1004–1010.
DOI: 10.1016/j.fusengdes.2017.05.071
Google Scholar
[12]
Z. Chen, G. Jin, K. Chen, Y. Chen, Y. Song, L. Hu, L. Niu, X. Sheng, Y. Cheng, K. Lu, Development and experimental study of beryllium window for ITER radial X-ray camera, Fusion Eng. Des. 88 (2013) 3280–3286.
DOI: 10.1016/j.fusengdes.2013.10.006
Google Scholar
[13]
M. Mcelfresh, J. Gunther, C. Alford, E. Fought, R. Cook, A. Nikroo, H. Xu, J.C. Cooley, R.D. Field, R.E. Hackenberg, Fabrication of beryllium capsules with copper-doped layers for NIF trgets: a progress report, Fusion Sci. Technol. 49 (2005) 786–795.
DOI: 10.13182/fst49-786
Google Scholar
[14]
E.I. Moses, The National Ignition Facility (NIF): A path to fusion energy ☆, Energy Convers. Manag. 49 (2008) 1795–1802.
DOI: 10.1016/j.enconman.2007.10.029
Google Scholar
[15]
L. Zheng, Z. Qiao, X. Xu, L. Wang, Effects of γ irradiation on the compression and inter-laminar shear properties of G10 for the BESIII beam pipe supporting flange, Fusion Eng. Des. 117 (2017) 24–29.
DOI: 10.1016/j.fusengdes.2017.02.029
Google Scholar
[16]
L. Zheng, S. Li, X. Qian, L. Wang, Pre-irradiation effect on corrosion of Be in EDM-1, At. Energy Sci. Technol. 51 (2017) 1336–1341.
Google Scholar
[17]
L. Zheng, Q. Ji, L. Wang, X. Li, J. Liu, Application of powder metallurgy beryllium in Beij ing Spectrometer Ⅲ beam pipe, At. Energy Sci. Technol. 42 (2008) 87–91.
Google Scholar
[18]
V. Kuksenko, K. Ammigan, B. Hartsell, C. Densham, P. Hurh, S. Roberts, Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source, J. Nucl. Mater. 490 (2017) 260–271.
DOI: 10.1016/j.jnucmat.2017.04.011
Google Scholar
[19]
P. Adamson, K. Anderson, M. Andrews, R. Andrews, I. Anghel, D. Augustine, A. Aurisano, S. Avvakumov, D.S. Ayres, B. Baller, The NuMI neutrino beam, Nucl. Instruments Methods Phys. Res. A. 806 (2016) 279–306.
Google Scholar
[20]
T. Davenne, O. Caretta, C. Densham, M. Fitton, P. Loveridge, P. Hurh, R. Zwaska, J. Hylen, V. Papadimitriou, Segmented beryllium target for a 2 MW super beam facility, Phys. Rev. Spec. Top. - Accel. Beams. 18 (2015) 091003.
DOI: 10.1103/physrevstab.18.091003
Google Scholar
[21]
J. Zhong, Z. Li, Z. Wang, D. Wang, F. Li, J. Li, J. Zhang, Progress in research and application of beryllium materials used in inertial guidance instrument, Power Metall. Ind. 28 (2018) 1–6.
Google Scholar
[22]
X. Wang, X. Song, P. Zhang, J. Chang, Application of beryllium in high-precision quartz flexible accelerometer, Missiles Sp. Veh. (2015) 96–99.
Google Scholar
[23]
C. Zhang, Z. Cai, D. Shu, W. Hou, Application and prospect of ship inertial navigation technology, Sh. Sci. Technol. 34 (2012) 3–8.
Google Scholar
[24]
R. Wang, C. Wang, C. Zhao, DeVelopment of application and processing of beryllium abroad, Navig. Control. 14 (2015) 13-19,64.
Google Scholar
[25]
Y. Wang, Application & development of beryllium in high technology, Rare Met. Mater. Eng. 24 (1995) 29–31.
Google Scholar
[26]
S. Liu, Beryllium industry of U.S.A, Shanghai Nonferrous Met. 20 (1999) 30–35.
Google Scholar
[27]
L. Shi, Y. Xu, F. Liu, Development and application of beryllium mirrors in optical systems, Chinese Opt. 7 (2014) 749–758.
Google Scholar
[28]
M.J. Russo, S. LoBiondo, B. Coon, M. Engelhardt, W. Pinzon, Beryllium optics and beryllium-aluminum structures for reconnaissance applications, in: Opt. Mater. Struct. Technol. III, International Society for Optics and Photonics, San Diego, California, United States, 2007: p. 66660T.
DOI: 10.1117/12.732225
Google Scholar
[29]
C. Wei, Russia's space target surveillance, identification, detection and tracking system, Aerosp. China. (2006) 39–41.
Google Scholar
[30]
C.G. Skillern, R.R. Hollman, K.M. Kulkarni, Near-net-shape beryllium structural helicopter parts, Met. Powder Rep. 47 (1992) 36–39.
DOI: 10.1016/0026-0657(92)91890-v
Google Scholar
[31]
C.J. Duston, T. Hull, Material trades between Be, SiC, and VQ aluminum for tactical systems: update referencing the current state-of-the-art, in: Infrared Technol. Appl. XXXVIII, International Society for Optics and Photonics, Baltimore, Maryland, United States, 2012: p.835328.
DOI: 10.1117/12.921094
Google Scholar
[32]
T. Parsonage, JWST beryllium telescope: material and substrate fabrication, in: Opt. Fabr. Metrol. Mater. Adv. Telesc., International Society for Optics and Photonics, Glasgow, United Kingdom, 2004: p.39–48.
Google Scholar
[33]
J. Daniel, T. Hull, J.B. Barentine, JWST: Tinsley achievements on the largest beryllium polishing project, in: Mod. Technol. Space- Ground-Based Telesc. Instrum. II, International Society for Optics and Photonics, Amsterdam, Netherlands, 2012: p.845021.
DOI: 10.1117/12.926715
Google Scholar
[34]
N.A. Othman, M. Takei, Application of tomography in microreactors, in: M. Wang (Ed.), Ind. Tomogr. Syst. Appl., Elsevier, 2015: p.667–692.
Google Scholar
[35]
B. DomIncorporated, J. Mahul, Acoustic Transducer Made Of Pure Beryllium With Directed Radiation, With A Concave-Shaped Diaphragm, For Audio Applications, In Particular For Acoustic Enclosures, J. Acoust. Soc. Am. 130 (2011) 632.
DOI: 10.1121/1.3615742
Google Scholar