Progress in the Application of Rare Light Metal Beryllium

Article Preview

Abstract:

As a special functional and structural material, the rare metal beryllium has been widely applied in many key areas due to its excellent nuclear properties, optical properties and physical properties such as low density, high specific stiffness, high specific strength, and excellent thermal properties. This article systematically reviews application of beryllium in strategic nuclear energy, high-energy physics, inertial navigation systems, aircraft structural components, optical systems and commercial fields. The paper also examines how beryllium promoted technological advances and improved the facilities performance in its applications fields. Beryllium plays an important role in the development of nuclear technology, defense, and aerospace, which make beryllium become a strategic and critical engineering material. The paper provides a reference for scientists and technicians to employ beryllium in more fields.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-271

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhong, D. Xu, C. Li, Z. Wang, F. Li, L. Wang, Z. Li, Progress in application of metallic beryllium, Mater. China. 33 (2014) 568–575.

Google Scholar

[2] Y. Zhang, Y. Qin, D. Wu, Z. Xie, A nature and application of beryllium, its alloys and beryllium in alloys, Trans. China Weld. Inst. 22 (2001) 92–96.

Google Scholar

[3] R. Puchta, A brighter beryllium, Nat. Chem. 3 (2011) 416.

Google Scholar

[4] J. Zhong, D. Xu, F. Li, Z. Wang, J. He, D. Su, Z. Li, Progress in beryllium and beryllium alloy technology, in: Power Metall. Sci. Technol. Forum, Beijing: High Education Press, ChangSha, 2013: p.97–106.

Google Scholar

[5] T.A. Tomberlin, Beryllium - a unique material in nuclear applications, in: 36th Int. SAMPE Tech. Conf., Idaho Falls, (2004).

Google Scholar

[6] E.G. Mohamed, Safety guidelines for space nuclear reactor power and propulsion systems, in: J.N. Pelton, R. Jakhu (Eds.), Sp. Saf. Regul. Stand., Elsevier, 2010: p.319–370.

Google Scholar

[7] C. Willis, G. Muhrer, Target system neutronics study for NXGENS, Nucl. Instruments Methods Phys. Res. A. 570 (2007) 374–383.

DOI: 10.1016/j.nima.2006.10.212

Google Scholar

[8] B. Patel, W. Parsons, Operational beryllium handling exeperience at JET, Fusion Eng. Des. 69 (2003) 689–694.

DOI: 10.1016/s0920-3796(03)00098-x

Google Scholar

[9] B. Spilker, J. Linke, G. Pintsuk, M. Wirtz, Impact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications, Fusion Eng. Des. 109 (2016) 1692–1696.

DOI: 10.1016/j.fusengdes.2015.10.028

Google Scholar

[10] X. Liu, J. Chen, Y. Lian, J. Wu, Z. Xu, N. Zhang, Q. Wang, X. Duan, Z. Wang, J. Zhong, Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors, J. Nucl. Mater. 442 (2013) S309--S312.

DOI: 10.1016/j.jnucmat.2013.04.088

Google Scholar

[11] I.B. Kupriyanov, G.N. Nikolaev, G. Gorayev, Progress in development and qualification of beryllium for ITER blanket first wall application in Russian Federation, Fusion Eng. Des. 124 (2017) 1004–1010.

DOI: 10.1016/j.fusengdes.2017.05.071

Google Scholar

[12] Z. Chen, G. Jin, K. Chen, Y. Chen, Y. Song, L. Hu, L. Niu, X. Sheng, Y. Cheng, K. Lu, Development and experimental study of beryllium window for ITER radial X-ray camera, Fusion Eng. Des. 88 (2013) 3280–3286.

DOI: 10.1016/j.fusengdes.2013.10.006

Google Scholar

[13] M. Mcelfresh, J. Gunther, C. Alford, E. Fought, R. Cook, A. Nikroo, H. Xu, J.C. Cooley, R.D. Field, R.E. Hackenberg, Fabrication of beryllium capsules with copper-doped layers for NIF trgets: a progress report, Fusion Sci. Technol. 49 (2005) 786–795.

DOI: 10.13182/fst49-786

Google Scholar

[14] E.I. Moses, The National Ignition Facility (NIF): A path to fusion energy ☆, Energy Convers. Manag. 49 (2008) 1795–1802.

DOI: 10.1016/j.enconman.2007.10.029

Google Scholar

[15] L. Zheng, Z. Qiao, X. Xu, L. Wang, Effects of γ irradiation on the compression and inter-laminar shear properties of G10 for the BESIII beam pipe supporting flange, Fusion Eng. Des. 117 (2017) 24–29.

DOI: 10.1016/j.fusengdes.2017.02.029

Google Scholar

[16] L. Zheng, S. Li, X. Qian, L. Wang, Pre-irradiation effect on corrosion of Be in EDM-1, At. Energy Sci. Technol. 51 (2017) 1336–1341.

Google Scholar

[17] L. Zheng, Q. Ji, L. Wang, X. Li, J. Liu, Application of powder metallurgy beryllium in Beij ing Spectrometer Ⅲ beam pipe, At. Energy Sci. Technol. 42 (2008) 87–91.

Google Scholar

[18] V. Kuksenko, K. Ammigan, B. Hartsell, C. Densham, P. Hurh, S. Roberts, Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source, J. Nucl. Mater. 490 (2017) 260–271.

DOI: 10.1016/j.jnucmat.2017.04.011

Google Scholar

[19] P. Adamson, K. Anderson, M. Andrews, R. Andrews, I. Anghel, D. Augustine, A. Aurisano, S. Avvakumov, D.S. Ayres, B. Baller, The NuMI neutrino beam, Nucl. Instruments Methods Phys. Res. A. 806 (2016) 279–306.

Google Scholar

[20] T. Davenne, O. Caretta, C. Densham, M. Fitton, P. Loveridge, P. Hurh, R. Zwaska, J. Hylen, V. Papadimitriou, Segmented beryllium target for a 2 MW super beam facility, Phys. Rev. Spec. Top. - Accel. Beams. 18 (2015) 091003.

DOI: 10.1103/physrevstab.18.091003

Google Scholar

[21] J. Zhong, Z. Li, Z. Wang, D. Wang, F. Li, J. Li, J. Zhang, Progress in research and application of beryllium materials used in inertial guidance instrument, Power Metall. Ind. 28 (2018) 1–6.

Google Scholar

[22] X. Wang, X. Song, P. Zhang, J. Chang, Application of beryllium in high-precision quartz flexible accelerometer, Missiles Sp. Veh. (2015) 96–99.

Google Scholar

[23] C. Zhang, Z. Cai, D. Shu, W. Hou, Application and prospect of ship inertial navigation technology, Sh. Sci. Technol. 34 (2012) 3–8.

Google Scholar

[24] R. Wang, C. Wang, C. Zhao, DeVelopment of application and processing of beryllium abroad, Navig. Control. 14 (2015) 13-19,64.

Google Scholar

[25] Y. Wang, Application & development of beryllium in high technology, Rare Met. Mater. Eng. 24 (1995) 29–31.

Google Scholar

[26] S. Liu, Beryllium industry of U.S.A, Shanghai Nonferrous Met. 20 (1999) 30–35.

Google Scholar

[27] L. Shi, Y. Xu, F. Liu, Development and application of beryllium mirrors in optical systems, Chinese Opt. 7 (2014) 749–758.

Google Scholar

[28] M.J. Russo, S. LoBiondo, B. Coon, M. Engelhardt, W. Pinzon, Beryllium optics and beryllium-aluminum structures for reconnaissance applications, in: Opt. Mater. Struct. Technol. III, International Society for Optics and Photonics, San Diego, California, United States, 2007: p. 66660T.

DOI: 10.1117/12.732225

Google Scholar

[29] C. Wei, Russia's space target surveillance, identification, detection and tracking system, Aerosp. China. (2006) 39–41.

Google Scholar

[30] C.G. Skillern, R.R. Hollman, K.M. Kulkarni, Near-net-shape beryllium structural helicopter parts, Met. Powder Rep. 47 (1992) 36–39.

DOI: 10.1016/0026-0657(92)91890-v

Google Scholar

[31] C.J. Duston, T. Hull, Material trades between Be, SiC, and VQ aluminum for tactical systems: update referencing the current state-of-the-art, in: Infrared Technol. Appl. XXXVIII, International Society for Optics and Photonics, Baltimore, Maryland, United States, 2012: p.835328.

DOI: 10.1117/12.921094

Google Scholar

[32] T. Parsonage, JWST beryllium telescope: material and substrate fabrication, in: Opt. Fabr. Metrol. Mater. Adv. Telesc., International Society for Optics and Photonics, Glasgow, United Kingdom, 2004: p.39–48.

Google Scholar

[33] J. Daniel, T. Hull, J.B. Barentine, JWST: Tinsley achievements on the largest beryllium polishing project, in: Mod. Technol. Space- Ground-Based Telesc. Instrum. II, International Society for Optics and Photonics, Amsterdam, Netherlands, 2012: p.845021.

DOI: 10.1117/12.926715

Google Scholar

[34] N.A. Othman, M. Takei, Application of tomography in microreactors, in: M. Wang (Ed.), Ind. Tomogr. Syst. Appl., Elsevier, 2015: p.667–692.

Google Scholar

[35] B. DomIncorporated, J. Mahul, Acoustic Transducer Made Of Pure Beryllium With Directed Radiation, With A Concave-Shaped Diaphragm, For Audio Applications, In Particular For Acoustic Enclosures, J. Acoust. Soc. Am. 130 (2011) 632.

DOI: 10.1121/1.3615742

Google Scholar