[1]
S. K. Siddhanta and R. Gangopadhyay, Conducting polymer gel: formation of a novel semi-IPN from polyaniline and crosslinked poly (2-acrylamido-2-methyl propanesulphonicacid),, Polymer (Guildf)., vol. 46, no. 9, p.2993–3000, (2005).
DOI: 10.1016/j.polymer.2005.01.084
Google Scholar
[2]
R. A. Green et al., electrode applications Conducting polymer-hydrogels for medical electrode applications,, Sci. Technol. Adv. Mater., vol. 6996, no. December, p.14107, (2017).
Google Scholar
[3]
D. Mawad, A. Lauto, and G. G. Wallace, Conductive Polymer Hydrogels,, in Polymeric hydrogels as smart biomaterials, Springer, 2015, p.19–44.
DOI: 10.1007/978-3-319-25322-0_2
Google Scholar
[4]
W. Zhang, P. Feng, J. Chen, Z. Sun, and B. Zhao, Electrically conductive hydrogels for flexible energy storage systems,, Prog. Polym. Sci., vol. 88, p.220–240, (2019).
DOI: 10.1016/j.progpolymsci.2018.09.001
Google Scholar
[5]
M. Rouabhia, H. Park, S. Meng, H. Derbali, and Z. Zhang, Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation,, PLoS One, vol. 8, no. 8, p. e71660, (2013).
DOI: 10.1371/journal.pone.0071660
Google Scholar
[6]
A. Sebastian, S. W. Volk, P. Halai, J. Colthurst, R. Paus, and A. Bayat, Enhanced neurogenic biomarker expression and reinnervation in human acute skin wounds treated by electrical stimulation,, J. Invest. Dermatol., vol. 137, no. 3, p.737–747, (2017).
DOI: 10.1016/j.jid.2016.09.038
Google Scholar
[7]
J. S. Boateng, K. H. Matthews, H. N. E. Stevens, and G. M. Eccleston, Wound Healing Dressings and Drug Delivery Systems: A Review,, J. Pharm. Sci., vol. 97, no. 8, p.2892–2923, (2008).
DOI: 10.1002/jps.21210
Google Scholar
[8]
J. Stejskal and R. G. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report),, Pure Appl. Chem., vol. 74, no. 5, p.857–867, (2002).
DOI: 10.1351/pac200274050857
Google Scholar
[9]
X. Xiao, G. Wu, H. Zhou, K. Qian, and J. Hu, Preparation and Property Evaluation of Conductive Hydrogel Using Poly (Vinyl Alcohol)/Polyethylene Glycol/Graphene Oxide for Human Electrocardiogram Acquisition,, Polymers , vol. 9, no. 7. (2017).
DOI: 10.3390/polym9070259
Google Scholar
[10]
D. Kumar, Influence of Dopant Ions on the Properties of Conducting Polyacrylamide/Polyaniline Hydrogels AU - Prabhakar, Reetu,, Polym. Plast. Technol. Eng., vol. 55, no. 1, p.46–53, Jan. (2016).
DOI: 10.1080/03602559.2015.1055501
Google Scholar
[11]
X.-R. Zeng and T.-M. Ko, Structures and properties of chemically reduced polyanilines,, Polymer (Guildf)., vol. 39, no. 5, p.1187–1195, (1998).
DOI: 10.1016/s0032-3861(97)00381-9
Google Scholar
[12]
E. C. Gomes and M. A. S. Oliveira, Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines,, Am. J. Polym. Sci, vol. 2, no. 2, p.5–13, (2012).
DOI: 10.5923/j.ajps.20120202.02
Google Scholar
[13]
G. Kaur, R. Adhikari, P. Cass, M. Bown, and P. Gunatillake, Electrically conductive polymers and composites for biomedical applications,, Rsc Adv., vol. 5, no. 47, p.37553–37567, (2015).
DOI: 10.1039/c5ra01851j
Google Scholar
[14]
Q. Tang, J. Wu, H. Sun, J. Lin, S. Fan, and D. Hu, Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure,, Carbohydr. Polym., vol. 74, no. 2, p.215–219, (2008).
DOI: 10.1016/j.carbpol.2008.02.008
Google Scholar
[15]
J. N. Sunitha, Development and evaluation of electrically conductive polymer composites and their characterization,, p.35, (2016).
Google Scholar
[16]
C. Martín et al., Graphene improves the biocompatibility of polyacrylamide hydrogels: 3D polymeric scaffolds for neuronal growth,, Sci. Rep., vol. 7, no. 1, p.10942, (2017).
DOI: 10.1038/s41598-017-11359-x
Google Scholar
[17]
T. Dai, X. Qing, J. Wang, C. Shen, and Y. Lu, Interfacial polymerization to high-quality polyacrylamide/polyaniline composite hydrogels,, Compos. Sci. Technol., vol. 70, no. 3, p.498–503, (2010).
DOI: 10.1016/j.compscitech.2009.11.027
Google Scholar