[1]
J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys — a critical review. J. Alloys Compd. 336 (2002) 88-113.
DOI: 10.1016/s0925-8388(01)01899-0
Google Scholar
[2]
Z.U. Rehman, Y. S. Jeong, B.H. Koo, Effect of Processing Time on the Microarc Oxidation Coatings Produced on Magnesium AZ61 Alloy at Constant Hybrid Voltage. Korean Journal of Materials Research. 25 (2015) 509-515.
DOI: 10.3740/mrsk.2015.25.10.509
Google Scholar
[3]
Z.U. Rehman, B.H. Koo, Combined effect of long processing time and Na2SiF6 on the properties of PEO coatings formed on AZ91D, J. Mater. Eng. Perform. 25 (2016)3531–3537.
DOI: 10.1007/s11665-016-2177-2
Google Scholar
[4]
Z.U. Rehman, S. H. Shin, I. Hussain, B. H. Koo, Structure and corrosion properties of the two-step PEO coatings formed on AZ91D Mg alloy in K2ZrF6-based electrolyte solution, Surf. Coat. Technol. 307 (2016) 484-490.
DOI: 10.1016/j.surfcoat.2016.09.030
Google Scholar
[5]
G. Song, A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Advanced Engineering Materials. 5 (2003) 249-273.
DOI: 10.1002/adem.200310405
Google Scholar
[6]
Wang Li, Wen Fu, Shiqin Wang, Jian Li, Plasma electrolytic oxidation coatings in KOH electrolyte and its discharge characteristics. J. Alloys Compd. 594 (2014) 27-31.
DOI: 10.1016/j.jallcom.2014.01.109
Google Scholar
[7]
R. Arrabal, E. Matykina, T. Hashimot, P. Skeldon, and G.E. Thompson, Characterization of AC PEO Coatings on Magnesium Alloys, Surf. Coat. Technol. 203 (2009) 2207–2220.
DOI: 10.1016/j.surfcoat.2009.02.011
Google Scholar
[8]
Young Gun Ko , Seung Namgung , Dong Hyuk Shin, Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation. Surf. Coat. Technol. 205 2010, 2525-2531.
DOI: 10.1016/j.surfcoat.2010.09.055
Google Scholar
[9]
L.O. Snizhko, A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin, A. Leyland, and A. Matthews, Anodic Processes in Plasma Electrolytic Oxidation of Aluminum in Alkaline Solutions. Electrochim. Acta. 49 (2004) pp.2085-2095.
DOI: 10.1016/j.electacta.2003.11.027
Google Scholar
[10]
D. Salehi Doolabi, M. Ehteshamzadeh, and S.M.M. Mirhosseini, Effect of NaOH on the Structure and Corrosion Performance of Alumina and Silica PEO Coatings on Aluminum. JMEPEG. 21 (2012) 2195-2202.
DOI: 10.1007/s11665-012-0151-1
Google Scholar
[11]
I. Han, J.H. Choi, B.H. Zhao, H.K. Baik, I. Lee, Micro-arc oxidation in various concentration of KOH and structural change by different cut off potential. Curr. Appl. Phys. 7S1 (2007) e23-e27.
DOI: 10.1016/j.cap.2006.11.008
Google Scholar
[12]
Zeeshan Ur Rehman, Dong-Gun Lee, Bon Heun Koo. Effect of OH− Concentration on the Mechanical and Microstructural Properties of Microarc Oxidatoin Coating Produced on Al7075 Alloy. Korean Journal of Materials Research. 25 (2015) 503-508.
DOI: 10.3740/mrsk.2015.25.10.503
Google Scholar
[13]
L.O. Snizhko, A.L. Yerokhin, N.L. Gurevina, V.A. Patalakha, A. Matthews; Excessive oxygen evolution during plasma electrolytic oxidation of aluminium, Thin Solid Films 516 (2007) 460–464.
DOI: 10.1016/j.tsf.2007.06.158
Google Scholar
[14]
J.R. Morlidge, P. Skeldon, G.E. Thompson, H. Habazaki, K. Shimizu, G.C. Wood, Gel formation and the efficiency of anodic growth on Aluminium, Electrochim. Acta 44 (1999) 2423.
DOI: 10.1016/s0013-4686(98)00363-6
Google Scholar
[15]
Hongfei Guo, Maozhong An, Shen Xu, Huibin Huo; Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy, Thin Solid Films 485 (2005) 53–58.
DOI: 10.1016/j.tsf.2005.03.050
Google Scholar
[16]
J.A. Williams, Wear modelling: analytical, computational and mapping: a continuum mechanics approach, Wear, 1, (1999) Part 1, 225–229.
DOI: 10.1016/s0043-1648(99)00060-5
Google Scholar