Solution Strengthening the Ti-6Al-4V Joints were Brazed by Ti-15Cu-15Ni and Ag-26.7Cu-4.5Ti Filler Foils

Article Preview

Abstract:

Using the optimal solution and aging treatment for Ti-6Al-4V brazed by Ti-15Cu-15Ni and Ag-26.7Cu-4.5Ti fillers, the average shear strengths of the lap-joint interface are improved. And the average grain sizes and the average lengths of Widmanstätten structure are significantly smaller than that of post-brazed annealing. Both fillers specimens are examined to indicate the strengthening mechanism is to homogenize the microstructure of Ti-6Al-4V joints to simultaneously enhance the strength of joint braze and substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-95

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. R. Wood, P. A. Russo, Heat Treatment of Titanium Alloys, 1997, p.6, 227, 228, 229, 427.

Google Scholar

[2] P. Villars, A. Prince, and H. Okamoto (Editor), Handbook of Ternary Alloy Phase Diagrams, ASM International, (1995).

Google Scholar

[3] T. B. Massalski, Binary Alloy Phase Diagrams, ASM International, (1990).

Google Scholar

[4] I. T. Hong, and C. H. Koo, Materials Chemistry and Physics, Vol. 94(1), (2005)131-140.

Google Scholar

[5] D. C. Wallace, Thermodynamics of Crystals, Wiley, New York, (1972).

Google Scholar

[6] Q. W. Qiu, Y. Wang, Z.W. Yang, and D. P. Wang, Journal of the European Ceramic Society, Vol. 36(8), (2016) 2067-2074.

Google Scholar

[7] C. T. Chang, Y. C. Du, R. K. Shiue, and C. S. Chang, Materials Science & Engineering A, Vol. 420(1-2) ,(2006) 155-164.

Google Scholar

[8] M. C. Ho, P. J. Lo, W. L. Liu, and K. C. Hsieh, Journal of Materials Science and Engineering B 7 (7-8), (2017) 142-148.

Google Scholar

[9] F. J. Gil, M. P. Ginebra, J. M. Manero, and J. A. Planell, Journal of Alloys and compounds, Vol. 239, No. 1-2, (2001) 142-152.

Google Scholar

[10] Morgan Advanced Materials, 26 Madison Road, Fairfield, NJ 07004 USA, (2017).

Google Scholar

[11] L. Nádai, B. Katona, A. Terdik, and E. Bognár, periodica polytechnica Mechanical Engineering 57/2 (2013) 53-57.

DOI: 10.3311/ppme.7046

Google Scholar

[12] K. H. Lee, S. Y. Yang, J. G. Yang, The International Journal of Advanced Manufacturing Technology, Volume 90, Issue 1-4, (2017) 753–761.

Google Scholar

[13] R. Abbaschian, R. E. Reed-Hill, Physical metallurgical principles, 3rd ed., (1996) 190-192, 228-231, 240-264, 278-279, 614, 622, 706-718.

Google Scholar

[14] I. T. Hong, and C. H. Koo, Materials Science & Engineering A, Vol. 398(1-2), (2005) 113-127.

Google Scholar

[15] C. T. Chang, and R. K. Shiue, International Journal of Refractory Metals and Hard Materials, Vol. 23(3), (2005) 161-170.

Google Scholar

[16] S. Gambaro, F. Valenza, A. Passerone, G. Cacciamani, and M. L. Muolo, Journal of the European Ceramic Society, Vol. 36(16), (2016) 4185-4196.

DOI: 10.1016/j.jeurceramsoc.2016.05.022

Google Scholar

[17] M. I. Barrena, L. Matesanz, de Salazar, and J. M. Gómez, Materials Characterization, Vol. 60(11), (2009) 1263-1267.

DOI: 10.1016/j.matchar.2009.05.007

Google Scholar