[1]
G. J. Aubrecht, Energy: Physical, Environmental, and Social Impact, Pearson Education, London (2006).
Google Scholar
[2]
C. Beggs, Energy: Management, Supply and Conservation, Elsevier, Oxford (2002).
Google Scholar
[3]
Q. Liao, Z. Zhang, X. Zhang, M. Mohr, Y. Zhang, H.-J. Fecht, Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting, Nano Res. 7 (2014) 917–928.
DOI: 10.1007/s12274-014-0453-8
Google Scholar
[4]
K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J.E. Kim, S.O. Kim, D.K. Kim, Z.L. Wang, K.J. Lee, Flexible nanocomposite generator made of BaTiO3nanoparticles and graphitic carbons, Adv. Mater. 24 (2012) 2999–3004.
DOI: 10.1002/adma.201200105
Google Scholar
[5]
H. Wang, B. Jiang, T. R. Shrout, and W. Cao, Electromechanical Properties of Fine-Grain, 0. 7 Pb (Mg 1 / 3 Nb 2 / 3 ) O 3 -0 . 3PbTiO 3 Ceramics,, p.1–4, (2004).
Google Scholar
[6]
A. Jain, K.J. Prashanth, A.K. Sharma, A. Jain, P.N. Rashmi, Dielectric and piezoelectric properties of PVDF/PZT composites: a review, Polym. Eng. Sci. 55(2015) 1589–1616.
DOI: 10.1002/pen.24088
Google Scholar
[7]
B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971).
Google Scholar
[8]
K. C. Cheng, H. L. W. Chanl, C. L. Choy, Q. R. Yin, H. S. Luo, and Z. W. Yin, Piezoelectric Coefficients of PMN-0 . 33PT Single Crystals,, Ieee, p.533–536, (2001).
Google Scholar
[9]
Fu H and Cohen R E, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics,, Nature 403 281–3, (2000).
DOI: 10.1038/35002022
Google Scholar
[10]
C. Dagdeviren, P. Joe, O.L. Tuzman, K.-I. Park, K.J. Lee, Y. Shi, Y. Huang, J.A. Rogers, Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation, Extreme Mech. Lett. 9 (2016) 269–281.
DOI: 10.1016/j.eml.2016.05.015
Google Scholar
[11]
S.R. Khaled, D. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Mater. Struct. 23 (2014) 033001–033026.
DOI: 10.1088/0964-1726/23/3/033001
Google Scholar
[12]
Q. Liao, Z. Zhang, X. Zhang, M. Mohr, Y. Zhang, and H. Fecht, Flexible piezoelectric nanogenerators based on a fiber / ZnO nanowires / paper hybrid structure for energy,, vol. 7, no. 6, p.917–928, (2014).
DOI: 10.1007/s12274-014-0453-8
Google Scholar
[13]
X. Lu, H. Qu, and M. Skorobogatiy, Xin Lu, Hang Qu, and Maksim Skorobogatiy, ACS Nano 2017, 11, 2103−2114.
DOI: 10.1021/acsnano.6b08290
Google Scholar
[14]
K.-I. Park, C.K. Jeong, J. Ryu, G.-T. Hwang, K.J. Lee, Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes, Adv. Energy Mater. 3 (2013) 1539–1544.
DOI: 10.1002/aenm.201300458
Google Scholar
[15]
W. Jung, Y. Do, M. Kang, and C. Kang, Energy harvester using PZT nanotubes fabricated by template-assisted method,, Curr. Appl. Phys., vol. 13, pp. S131–S134, (2013).
DOI: 10.1016/j.cap.2013.01.009
Google Scholar
[16]
S. Das, A. K. Biswal, K. Parida, R. N. P. Choudhary, and A. Roy, Electrical and mechanical behavior of PMN-PT/CNT based polymer composite film for energy harvesting,, Appl. Surf. Sci., vol. 428, p.356–363, (2018).
DOI: 10.1016/j.apsusc.2017.09.077
Google Scholar
[17]
S. Crossley, S. Kar-Narayan, Energy harvesting performance of piezoelectric ceramic and polymer nanowires, Nanotechnology 26 (2015) 344001–344010.
DOI: 10.1088/0957-4484/26/34/344001
Google Scholar
[18]
W. Wu, High-performance piezoelectric nanogenerators for self-powered nanosystems: quantitative standards and figures of merit, Nanotechnology 27(2016) 0957–4484.
DOI: 10.1088/0957-4484/27/11/112503
Google Scholar
[19]
E.B. Araújo, Recent advances in processing, structural and dielectric properties of PMN-PT ferroelectric ceramics at compositions around the MPB, in: C. Sikalidis (Ed.), Advances in Ceramics—Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, InTech, (2011).
DOI: 10.5772/18083
Google Scholar
[20]
S. W. Choi, J. M. Jung & A. S. Bhalla (1996) Morphotropic phase boundary in relaxor ferroelectric pb(mg1/3nb2/3)o3 ceramics, Ferroelectrics, 189:1, 27-38,.
DOI: 10.1080/00150199608213400
Google Scholar
[21]
K. S. Moon, A. Mathers, and J. Yi, Development of a PMN-PT/PDMS vibrational energy harvester,, vol. 7266, p. 72660V, (2008).
DOI: 10.1115/dscc2008-2115
Google Scholar
[22]
S. Xu, Y. Yeh, G. Poirier, M.C. Mcalpine, R. A. Register, and N. Yao, Flexible Piezoelectric PMN-PT Nanowire-Based Nanocomposite and Device,, Nano Lett. 2013, 13, 2393−2398.
DOI: 10.1021/nl400169t
Google Scholar
[23]
Napatporn Promsawat, Methee Promsawat, Phatthanapong Janphuang, Zhenhua Luo, Steve Beeby, Catleya Rojviriya, Phakkhananan Pakawanit & Soodkhet Pojprapai (2018) CNTs-added PMNT/PDMS flexible piezoelectric nanocomposite for energy harvesting application, Integrated Ferroelectrics, 187:1, 70-79,.
DOI: 10.1080/10584587.2018.1445684
Google Scholar