A Review on the Fabrication of In Situ Metal Matrix Composite during Friction Stir Welding

Article Preview

Abstract:

In recent years, increasing weld strength along with improved surface properties of the joint during friction stir welding (FSW) has gained noteworthy attention due to increasing applications concerning higher wear resistance and strength related factors. Accordingly, the exploration endures for new materials and ways which will probably increase weld strength along with imparting various improved surface properties to the weld. In spite of several modifications on FSW, its in-situ composite fabrication potential remains quite unfamiliar. In this study, we make available an up to date review of recent in-situ fabricated composites during FSW by using various reinforcements. In particular, the effect of various reinforcements and methodology on the weld strength and surface hardness is reported systematically. Moreover, the strengthening mechanisms accountable for the improvement in weld propeties have been reviewed, and the new potential applications of this new welding strategy are envisaged.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-201

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Bobić, S. Mitrović, M. Babić, I. Bobić (2010) Corrosion of Metal-Matrix composites with aluminium alloy substrate, Tribol. Ind., 32:3–11.

Google Scholar

[2] B. Sahoo, J. Paul (2018) Solid state processed Al-1100 alloy/MWCNT surface nanocomposites, Materialia, 2:196–207.

DOI: 10.1016/j.mtla.2018.08.003

Google Scholar

[3] B. Sahoo, D. Narsimhachary, J. Paul (2018) Tribological Behavior of Solid-State Processed Al-1100/GNP Surface Nanocomposites, J. Mater. Eng. Perform., 27:6529–6544.

DOI: 10.1007/s11665-018-3727-6

Google Scholar

[4] A. Sharma, V.M. Sharma, B. Sahoo, S.K. Pal, J. Paul (2019) Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing, J. Manuf. Process., 37:53–70.

DOI: 10.1016/j.jmapro.2018.11.009

Google Scholar

[5] P. Ravindran, K. Manisekar, S. Vinoth Kumar, P. Rathika (2013) Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant, Mater. Des., 51:448–456.

DOI: 10.1016/j.matdes.2013.04.015

Google Scholar

[6] H.E. Çamurlu, N. Ünal (2011) Friction stir processing and characterisation of A380 cast aluminium alloy, Int. J. Cast Met. Res., 24:357–362.

DOI: 10.1179/1743133611y.0000000008

Google Scholar

[7] S. Babu, K. Elangovan, V. Balasubramanian, M. Balasubramanian (2009) Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints, Met. Mater. Int., 15:321–330.

DOI: 10.1007/s12540-009-0321-3

Google Scholar

[8] S. Suresha, B.K. Sridhara (2010) Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates, Compos. Sci. Technol., 70:1652–1659.

DOI: 10.1016/j.compscitech.2010.06.013

Google Scholar

[9] C. D'Amato, J. Buhagiar, J.C. Betts (2014) Tribological characteristics of an A356 aluminium alloy laser surface alloyed with nickel and Ni–Ti–C, Appl. Surf. Sci., 313:720–729.

DOI: 10.1016/j.apsusc.2014.06.061

Google Scholar

[10] M. Rashad, F. Pan, A. Tang, M. Asif, M. Aamir (2014) Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium, J. Alloys Compd., 603:111–118.

DOI: 10.1016/j.jallcom.2014.03.038

Google Scholar

[11] T. Varol, A. Canakci (2015) Microstructure, electrical conductivity and hardness of multilayer graphene/Copper nanocomposites synthesized by flake powder metallurgy, Met. Mater. Int., 21:704–712.

DOI: 10.1007/s12540-015-5058-6

Google Scholar

[12] M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, S. Babu (2009) Influences of process parameters on tensile strength of friction stir welded cast A319 aluminium alloy joints, Met. Mater. Int., 15:313–320.

DOI: 10.1007/s12540-009-0313-3

Google Scholar

[13] F. Khodabakhshi, M. Nosko, A.P. Gerlich (2018) Influence of CNTs decomposition during reactive friction-stir processing of an Al-Mg alloy on the correlation between microstructural characteristics and microtextural components, J. Microsc., 271:188–206.

DOI: 10.1111/jmi.12708

Google Scholar

[14] A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, H. Omidvar (2018) The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer, J. Manuf. Process., 34:18–30.

DOI: 10.1016/j.jmapro.2018.05.029

Google Scholar

[15] A. Sharma, S. Sagar, R.P. Mahto, B. Sahoo, S.K. Pal, J. Paul (2018) Surface modification of Al6061 by graphene impregnation through a powder metallurgy assisted friction surfacing, Surf. Coatings Technol., 337:12–23.

DOI: 10.1016/j.surfcoat.2017.12.059

Google Scholar

[16] A. Sharma, V.M. Sharma, S. Mewar, S.K. Pal, J. Paul (2018) Friction stir processing of Al6061- SiC -graphite hybrid surface composites, Mater. Manuf. Process., 33:795–804.

DOI: 10.1080/10426914.2017.1401726

Google Scholar

[17] Q. Zhang, G. Wu, L. Jiang, G. Chen (2003) Thermal expansion and dimensional stability of Al-Si matrix composite reinforced with high content SiC, Mater. Chem. Phys., 82:780–785.

DOI: 10.1016/j.matchemphys.2003.07.001

Google Scholar

[18] R.S. Mishra, Z.Y. Ma (2005) Friction stir welding and processing, Mater. Sci. Eng. R Reports, 50:1–78.

Google Scholar

[19] A. Sharma, V. Mani Sharma, B. Sahoo, J. Joseph, J. Paul (2018) Study of Nano-Mechanical, Electrochemical and Raman Spectroscopic Behavior of Al6061-SiC-Graphite Hybrid Surface Composite Fabricated through Friction Stir Processing, J. Compos. Sci., 2:32.

DOI: 10.3390/jcs2020032

Google Scholar

[20] B. Sahoo, R. Kumar, J. Joseph, A. Sharma, J. Paul (2017) Preparation of aluminium 6063-graphite surface composites by an electrical resistance heat assisted pressing technique, Surf. Coatings Technol., 309:563–572.

DOI: 10.1016/j.surfcoat.2016.12.011

Google Scholar

[21] B. Sahoo, J. Joseph, A. Sharma, J. Paul (2019) Particle size and shape effects on the surface mechanical properties of aluminium coated with carbonaceous materials, J. Compos. Mater., 53:261–270.

DOI: 10.1177/0021998318781932

Google Scholar

[22] B. Sahoo, J. Joseph, A. Sharma, J. Paul (2017) Surface modification of aluminium by graphene impregnation, Mater. Des., 116:51–64.

DOI: 10.1016/j.matdes.2016.11.075

Google Scholar

[23] Y.F. Sun, H. Fujii (2011) The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints, Mater. Sci. Eng. A, 528:5470–5475.

DOI: 10.1016/j.msea.2011.03.077

Google Scholar

[24] M. Bahrami, K. Dehghani, M.K. Besharati Givi (2014) A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique, Mater. Des., 53:217–225.

DOI: 10.1016/j.matdes.2013.07.006

Google Scholar

[25] M. Bahrami, M.K. Besharati Givi, K. Dehghani, N. Parvin (2014) On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique, Mater. Des., 53:519–527.

DOI: 10.1016/j.matdes.2013.07.049

Google Scholar

[26] M. Bahrami, M. Farahmand Nikoo, M.K. Besharati Givi (2015) Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes, Mater. Sci. Eng. A, 626:220–228.

DOI: 10.1016/j.msea.2014.12.009

Google Scholar

[27] M. Bahrami, N. Helmi, K. Dehghani, M.K.B. Givi (2014) Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength, Mater. Sci. Eng. A, 595:173–178.

DOI: 10.1016/j.msea.2013.11.068

Google Scholar

[28] A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, H. Omidvar (2018) The effect of changing chemical composition in dissimilar Mg/Al friction stir welded butt joints using zinc interlayer, J. Manuf. Process., 34:18–30.

DOI: 10.1016/j.jmapro.2018.05.029

Google Scholar

[29] A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, H. Omidvar (2019) In-situ nanocomposite in friction stir welding of 6061-T6 aluminum alloy to AZ31 magnesium alloy, J. Mater. Process. Technol., 263:296–307.

DOI: 10.1016/j.jmatprotec.2018.08.025

Google Scholar

[30] A.A. Fallahi, A. Shokuhfar, A. Ostovari Moghaddam, A. Abdolahzadeh (2017) Analysis of SiC nano-powder effects on friction stir welding of dissimilar Al-Mg alloy to A316L stainless steel, J. Manuf. Process., 30:418–430.

DOI: 10.1016/j.jmapro.2017.09.027

Google Scholar

[31] S. Niu, S. Ji, D. Yan, X. Meng, X. Xiong (2019) AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer, J. Mater. Process. Technol., 263:82–90.

DOI: 10.1016/j.jmatprotec.2018.08.009

Google Scholar

[32] G. Buffa, D. Campanella, L. Fratini (2017) Enhancement of mechanical properties of FSWed AA7075 lap joints through in-situ fabrication of MMC, J. Manuf. Process., 28:422–427.

DOI: 10.1016/j.jmapro.2017.04.008

Google Scholar

[33] Q. Zheng, X. Feng, Y. Shen, G. Huang, P. Zhao (2016) Dissimilar friction stir welding of 6061 Al to 316 stainless steel using Zn as a filler metal, J. Alloys Compd., 686:693–701.

DOI: 10.1016/j.jallcom.2016.06.092

Google Scholar

[34] A. Elrefaey, M. Takahashi, K. Ikeuchi (2005) Preliminary Investigation of Friction Stir Welding Aluminium/Copper Lap Joints, Weld. World, 49:93–101.

DOI: 10.1007/bf03266481

Google Scholar

[35] B. Kuang, Y. Shen, W. Chen, X. Yao, H. Xu, J. Gao, J. Zhang (2015) The dissimilar friction stir lap welding of 1A99 Al to pure Cu using Zn as filler metal with pinless, tool configuration, Mater. Des., 68:54–62.

DOI: 10.1016/j.matdes.2014.12.008

Google Scholar

[36] H. Mohammadzadeh Jamalian, H. Ramezani, H. Ghobadi, M. Ansari, S. Yari, M.K. Besharati Givi (2016) Processing–structure–property correlation in nano-SiC-reinforced friction stir welded aluminum joints, J. Manuf. Process., 21:180–189.

DOI: 10.1016/j.jmapro.2015.12.008

Google Scholar

[37] A. Hamdollahzadeh, M. Bahrami, M. Farahmand Nikoo, A. Yusefi, M.K. Besharati Givi, N. Parvin (2015) Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: The role of second pass processing, J. Manuf. Process., 20:367–373.

DOI: 10.1016/j.jmapro.2015.06.017

Google Scholar