[1]
B. Bobić, S. Mitrović, M. Babić, I. Bobić (2010) Corrosion of Metal-Matrix composites with aluminium alloy substrate, Tribol. Ind., 32:3–11.
Google Scholar
[2]
B. Sahoo, J. Paul (2018) Solid state processed Al-1100 alloy/MWCNT surface nanocomposites, Materialia, 2:196–207.
DOI: 10.1016/j.mtla.2018.08.003
Google Scholar
[3]
B. Sahoo, D. Narsimhachary, J. Paul (2018) Tribological Behavior of Solid-State Processed Al-1100/GNP Surface Nanocomposites, J. Mater. Eng. Perform., 27:6529–6544.
DOI: 10.1007/s11665-018-3727-6
Google Scholar
[4]
A. Sharma, V.M. Sharma, B. Sahoo, S.K. Pal, J. Paul (2019) Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing, J. Manuf. Process., 37:53–70.
DOI: 10.1016/j.jmapro.2018.11.009
Google Scholar
[5]
P. Ravindran, K. Manisekar, S. Vinoth Kumar, P. Rathika (2013) Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant, Mater. Des., 51:448–456.
DOI: 10.1016/j.matdes.2013.04.015
Google Scholar
[6]
H.E. Çamurlu, N. Ünal (2011) Friction stir processing and characterisation of A380 cast aluminium alloy, Int. J. Cast Met. Res., 24:357–362.
DOI: 10.1179/1743133611y.0000000008
Google Scholar
[7]
S. Babu, K. Elangovan, V. Balasubramanian, M. Balasubramanian (2009) Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints, Met. Mater. Int., 15:321–330.
DOI: 10.1007/s12540-009-0321-3
Google Scholar
[8]
S. Suresha, B.K. Sridhara (2010) Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates, Compos. Sci. Technol., 70:1652–1659.
DOI: 10.1016/j.compscitech.2010.06.013
Google Scholar
[9]
C. D'Amato, J. Buhagiar, J.C. Betts (2014) Tribological characteristics of an A356 aluminium alloy laser surface alloyed with nickel and Ni–Ti–C, Appl. Surf. Sci., 313:720–729.
DOI: 10.1016/j.apsusc.2014.06.061
Google Scholar
[10]
M. Rashad, F. Pan, A. Tang, M. Asif, M. Aamir (2014) Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium, J. Alloys Compd., 603:111–118.
DOI: 10.1016/j.jallcom.2014.03.038
Google Scholar
[11]
T. Varol, A. Canakci (2015) Microstructure, electrical conductivity and hardness of multilayer graphene/Copper nanocomposites synthesized by flake powder metallurgy, Met. Mater. Int., 21:704–712.
DOI: 10.1007/s12540-015-5058-6
Google Scholar
[12]
M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, S. Babu (2009) Influences of process parameters on tensile strength of friction stir welded cast A319 aluminium alloy joints, Met. Mater. Int., 15:313–320.
DOI: 10.1007/s12540-009-0313-3
Google Scholar
[13]
F. Khodabakhshi, M. Nosko, A.P. Gerlich (2018) Influence of CNTs decomposition during reactive friction-stir processing of an Al-Mg alloy on the correlation between microstructural characteristics and microtextural components, J. Microsc., 271:188–206.
DOI: 10.1111/jmi.12708
Google Scholar
[14]
A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, H. Omidvar (2018) The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer, J. Manuf. Process., 34:18–30.
DOI: 10.1016/j.jmapro.2018.05.029
Google Scholar
[15]
A. Sharma, S. Sagar, R.P. Mahto, B. Sahoo, S.K. Pal, J. Paul (2018) Surface modification of Al6061 by graphene impregnation through a powder metallurgy assisted friction surfacing, Surf. Coatings Technol., 337:12–23.
DOI: 10.1016/j.surfcoat.2017.12.059
Google Scholar
[16]
A. Sharma, V.M. Sharma, S. Mewar, S.K. Pal, J. Paul (2018) Friction stir processing of Al6061- SiC -graphite hybrid surface composites, Mater. Manuf. Process., 33:795–804.
DOI: 10.1080/10426914.2017.1401726
Google Scholar
[17]
Q. Zhang, G. Wu, L. Jiang, G. Chen (2003) Thermal expansion and dimensional stability of Al-Si matrix composite reinforced with high content SiC, Mater. Chem. Phys., 82:780–785.
DOI: 10.1016/j.matchemphys.2003.07.001
Google Scholar
[18]
R.S. Mishra, Z.Y. Ma (2005) Friction stir welding and processing, Mater. Sci. Eng. R Reports, 50:1–78.
Google Scholar
[19]
A. Sharma, V. Mani Sharma, B. Sahoo, J. Joseph, J. Paul (2018) Study of Nano-Mechanical, Electrochemical and Raman Spectroscopic Behavior of Al6061-SiC-Graphite Hybrid Surface Composite Fabricated through Friction Stir Processing, J. Compos. Sci., 2:32.
DOI: 10.3390/jcs2020032
Google Scholar
[20]
B. Sahoo, R. Kumar, J. Joseph, A. Sharma, J. Paul (2017) Preparation of aluminium 6063-graphite surface composites by an electrical resistance heat assisted pressing technique, Surf. Coatings Technol., 309:563–572.
DOI: 10.1016/j.surfcoat.2016.12.011
Google Scholar
[21]
B. Sahoo, J. Joseph, A. Sharma, J. Paul (2019) Particle size and shape effects on the surface mechanical properties of aluminium coated with carbonaceous materials, J. Compos. Mater., 53:261–270.
DOI: 10.1177/0021998318781932
Google Scholar
[22]
B. Sahoo, J. Joseph, A. Sharma, J. Paul (2017) Surface modification of aluminium by graphene impregnation, Mater. Des., 116:51–64.
DOI: 10.1016/j.matdes.2016.11.075
Google Scholar
[23]
Y.F. Sun, H. Fujii (2011) The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints, Mater. Sci. Eng. A, 528:5470–5475.
DOI: 10.1016/j.msea.2011.03.077
Google Scholar
[24]
M. Bahrami, K. Dehghani, M.K. Besharati Givi (2014) A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique, Mater. Des., 53:217–225.
DOI: 10.1016/j.matdes.2013.07.006
Google Scholar
[25]
M. Bahrami, M.K. Besharati Givi, K. Dehghani, N. Parvin (2014) On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique, Mater. Des., 53:519–527.
DOI: 10.1016/j.matdes.2013.07.049
Google Scholar
[26]
M. Bahrami, M. Farahmand Nikoo, M.K. Besharati Givi (2015) Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes, Mater. Sci. Eng. A, 626:220–228.
DOI: 10.1016/j.msea.2014.12.009
Google Scholar
[27]
M. Bahrami, N. Helmi, K. Dehghani, M.K.B. Givi (2014) Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength, Mater. Sci. Eng. A, 595:173–178.
DOI: 10.1016/j.msea.2013.11.068
Google Scholar
[28]
A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, H. Omidvar (2018) The effect of changing chemical composition in dissimilar Mg/Al friction stir welded butt joints using zinc interlayer, J. Manuf. Process., 34:18–30.
DOI: 10.1016/j.jmapro.2018.05.029
Google Scholar
[29]
A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, H. Omidvar (2019) In-situ nanocomposite in friction stir welding of 6061-T6 aluminum alloy to AZ31 magnesium alloy, J. Mater. Process. Technol., 263:296–307.
DOI: 10.1016/j.jmatprotec.2018.08.025
Google Scholar
[30]
A.A. Fallahi, A. Shokuhfar, A. Ostovari Moghaddam, A. Abdolahzadeh (2017) Analysis of SiC nano-powder effects on friction stir welding of dissimilar Al-Mg alloy to A316L stainless steel, J. Manuf. Process., 30:418–430.
DOI: 10.1016/j.jmapro.2017.09.027
Google Scholar
[31]
S. Niu, S. Ji, D. Yan, X. Meng, X. Xiong (2019) AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer, J. Mater. Process. Technol., 263:82–90.
DOI: 10.1016/j.jmatprotec.2018.08.009
Google Scholar
[32]
G. Buffa, D. Campanella, L. Fratini (2017) Enhancement of mechanical properties of FSWed AA7075 lap joints through in-situ fabrication of MMC, J. Manuf. Process., 28:422–427.
DOI: 10.1016/j.jmapro.2017.04.008
Google Scholar
[33]
Q. Zheng, X. Feng, Y. Shen, G. Huang, P. Zhao (2016) Dissimilar friction stir welding of 6061 Al to 316 stainless steel using Zn as a filler metal, J. Alloys Compd., 686:693–701.
DOI: 10.1016/j.jallcom.2016.06.092
Google Scholar
[34]
A. Elrefaey, M. Takahashi, K. Ikeuchi (2005) Preliminary Investigation of Friction Stir Welding Aluminium/Copper Lap Joints, Weld. World, 49:93–101.
DOI: 10.1007/bf03266481
Google Scholar
[35]
B. Kuang, Y. Shen, W. Chen, X. Yao, H. Xu, J. Gao, J. Zhang (2015) The dissimilar friction stir lap welding of 1A99 Al to pure Cu using Zn as filler metal with pinless, tool configuration, Mater. Des., 68:54–62.
DOI: 10.1016/j.matdes.2014.12.008
Google Scholar
[36]
H. Mohammadzadeh Jamalian, H. Ramezani, H. Ghobadi, M. Ansari, S. Yari, M.K. Besharati Givi (2016) Processing–structure–property correlation in nano-SiC-reinforced friction stir welded aluminum joints, J. Manuf. Process., 21:180–189.
DOI: 10.1016/j.jmapro.2015.12.008
Google Scholar
[37]
A. Hamdollahzadeh, M. Bahrami, M. Farahmand Nikoo, A. Yusefi, M.K. Besharati Givi, N. Parvin (2015) Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: The role of second pass processing, J. Manuf. Process., 20:367–373.
DOI: 10.1016/j.jmapro.2015.06.017
Google Scholar