[1]
J.W. Yeh, Alloy design strategies and future trends in high entropy alloys,, Jom. vol. 65, pp.1759-1771, (2013).
DOI: 10.1007/s11837-013-0761-6
Google Scholar
[2]
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in CoCrFeMnNi high entropy alloys,, Acta matter vol 61, pp.4887-4897, (2013).
DOI: 10.1016/j.actamat.2013.04.058
Google Scholar
[3]
J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, An anomalous decrease in X-Ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Ni-Si alloy systems with multi principal elements,, Matter.Chem.Phys, vol. 103, pp.41-46, (2007).
DOI: 10.1016/j.matchemphys.2007.01.003
Google Scholar
[4]
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory High entropy alloys", Intermetallics,, vol. 18, pp.1758-1765, (2010).
DOI: 10.1016/j.intermet.2010.05.014
Google Scholar
[5]
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K. a. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high entropy alloys,, Prog.Matter.Sci, vol. 61, pp.1-93, (2014).
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[6]
S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence concentration on the stability of fcc or bcc phase high entropy alloys,, Applied Physics, vol. 109, 103505, (2011).
DOI: 10.1063/1.3587228
Google Scholar
[7]
F. Wang, Y. Zhang, G. Chen, H. A. Davies, Tensile and compressive mechanical behavior of aCoCrCuFeNiAl0.5 High Entropy Alloy,, International Journal of Modern Physics B, vol. 23 pp.1254-1259, (2009).
DOI: 10.1142/s0217979209060774
Google Scholar
[8]
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high entropy alloy,, Acta matter, vol. 61, pp.5743-5755, (2013).
DOI: 10.1016/j.actamat.2013.06.018
Google Scholar
[9]
Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H.Ruan, T. Li, Microstructural control in Ti-Al for enhanced mechanical properties,, jom, vol. 52, pp.46-48, (2000).
Google Scholar
[10]
G.A. Salishchev, R.M. Imayev, O.N. Senkov, F.H. Froes, Production of Submicrocrystalline structure in large scale Ti-6Al-4V billet by warm severe deformation processing,, Scr.Matter., vol. 51, pp.1147-1151, (2014).
DOI: 10.1016/j.scriptamat.2004.08.018
Google Scholar
[11]
S. V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S. Yu. Mironov, S.L. Semiatin, Effect of grain size and partial disordering on the ductility of Ti3Al in the temperature range of 20-600oC,, Acta matter, vol. 47, pp.1809-1821, (1999).
DOI: 10.1016/s1359-6454(99)00044-0
Google Scholar
[12]
R.M. Imayev, N.K. Gabdullin, G.A. Salishchev, O.N. Senkov, V.M. Imayev, F.H. Froes, A promising new class of high-temperature alloys, Eutectic high entropy alloys,, Sci.Rep, vol. 4, p.6200, (2014).
DOI: 10.4028/www.scientific.net/msf.304-306.195
Google Scholar
[13]
A. V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of Al-Co-Cr-Ni-Fe-Cu high entropy alloy in as cast and wrought condition,, Mater.Sci.Eng.A, vol. 533, pp.107-118, (2012).
DOI: 10.1016/j.msea.2011.11.045
Google Scholar
[14]
A. Kumar, A.K. Swarnakar, M. Chopkar, Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering,, J. Mater. Eng. Perform, vol. 27, p.3304–3314, (2018).
DOI: 10.1007/s11665-018-3409-4
Google Scholar
[15]
A. Kumar, P. Dhekne, A. Kumar, M. Kumar, Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys,, Mater. Lett., vol. 188, pp.73-76, (2017).
DOI: 10.1016/j.matlet.2016.10.099
Google Scholar
[16]
A. Kumar, P. Dhekne, A. Kumar, M. Kumar, A.K. Srivastav, N. Chawake, B.S. Murty, Grain-size-dependent non-monotonic crystallite parameter variation in nanocrystalline W: The role of non-equilibrium grain boundary structure,, Scr. Mater, vol. 98, p.20–23, (2015).
DOI: 10.1016/j.scriptamat.2014.11.005
Google Scholar
[17]
H.X. Sui, M. Zhu, M. Qi, G.B. Li, D.Z. Yang, The enhancement of solid solubility limits of AlCo intermetallic compound by high-energy ball grinding,, J. Appl. Phys., vol. 71, p.2945–2949, (1992).
DOI: 10.1063/1.351028
Google Scholar
[18]
Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, S. Yang, Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique,, Mater. Des., vol. 44, p.535–539, (2013).
DOI: 10.1016/j.matdes.2012.08.048
Google Scholar
[19]
F. Graner, J. a Glazier, Mechanically Driven Alloying of Immiscible Elements,, Phys. Rev. Lett., vol. 69, p.2013–2016, (1992).
Google Scholar
[20]
A. Kumar, A.K. Swarnakar, A. Basu, M. Chopkar, Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSixhigh entropy alloys,, J. Alloys Compd., vol. 748, p.889–897, (2018).
DOI: 10.1016/j.jallcom.2018.03.242
Google Scholar