Synthesis and Characterization of Novel High Entropy Alloys

Article Preview

Abstract:

High entropy alloys (HEAs) generally exhibit either high resistance to deformation or high toughness due to the presence of body-centered or face-centered cubic structure, respectively. To overcome these limitations, new high entropy alloys have been developed in the present study. This investigation aims to synthesis and characterization of novel CoCrFeNi3Si, CoCrFe2Ni2Si, and Co2CrFeNi2Si high entropy alloys. The mechanical alloying route is used to synthesize these alloys. Grinding was carried out to 20h and X-ray diffraction (XRD) analysis was done at different time intervals of grinding. The face-centered cubic structure along with the intermetallic compound of Ni-Si was observed after 20h of grinding. Furthermore, a pseudo binary strategy based on the valence electron concentration and mixing enthalpy is also employed to design the high entropy alloys considered in the present study. Carefully analysis of the XRD pattern indicates that from 5 to 20h of mechanical alloying there is a decrement in the initial peaks of elements observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-173

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh, Alloy design strategies and future trends in high entropy alloys,, Jom. vol. 65, pp.1759-1771, (2013).

DOI: 10.1007/s11837-013-0761-6

Google Scholar

[2] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in CoCrFeMnNi high entropy alloys,, Acta matter vol 61, pp.4887-4897, (2013).

DOI: 10.1016/j.actamat.2013.04.058

Google Scholar

[3] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, An anomalous decrease in X-Ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Ni-Si alloy systems with multi principal elements,, Matter.Chem.Phys, vol. 103, pp.41-46, (2007).

DOI: 10.1016/j.matchemphys.2007.01.003

Google Scholar

[4] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory High entropy alloys", Intermetallics,, vol. 18, pp.1758-1765, (2010).

DOI: 10.1016/j.intermet.2010.05.014

Google Scholar

[5] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K. a. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high entropy alloys,, Prog.Matter.Sci, vol. 61, pp.1-93, (2014).

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[6] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence concentration on the stability of fcc or bcc phase high entropy alloys,, Applied Physics, vol. 109, 103505, (2011).

DOI: 10.1063/1.3587228

Google Scholar

[7] F. Wang, Y. Zhang, G. Chen, H. A. Davies, Tensile and compressive mechanical behavior of aCoCrCuFeNiAl0.5 High Entropy Alloy,, International Journal of Modern Physics B, vol. 23 pp.1254-1259, (2009).

DOI: 10.1142/s0217979209060774

Google Scholar

[8] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high entropy alloy,, Acta matter, vol. 61, pp.5743-5755, (2013).

DOI: 10.1016/j.actamat.2013.06.018

Google Scholar

[9] Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H.Ruan, T. Li, Microstructural control in Ti-Al for enhanced mechanical properties,, jom, vol. 52, pp.46-48, (2000).

Google Scholar

[10] G.A. Salishchev, R.M. Imayev, O.N. Senkov, F.H. Froes, Production of Submicrocrystalline structure in large scale Ti-6Al-4V billet by warm severe deformation processing,, Scr.Matter., vol. 51, pp.1147-1151, (2014).

DOI: 10.1016/j.scriptamat.2004.08.018

Google Scholar

[11] S. V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S. Yu. Mironov, S.L. Semiatin, Effect of grain size and partial disordering on the ductility of Ti3Al in the temperature range of 20-600oC,, Acta matter, vol. 47, pp.1809-1821, (1999).

DOI: 10.1016/s1359-6454(99)00044-0

Google Scholar

[12] R.M. Imayev, N.K. Gabdullin, G.A. Salishchev, O.N. Senkov, V.M. Imayev, F.H. Froes, A promising new class of high-temperature alloys, Eutectic high entropy alloys,, Sci.Rep, vol. 4, p.6200, (2014).

DOI: 10.4028/www.scientific.net/msf.304-306.195

Google Scholar

[13] A. V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of Al-Co-Cr-Ni-Fe-Cu high entropy alloy in as cast and wrought condition,, Mater.Sci.Eng.A, vol. 533, pp.107-118, (2012).

DOI: 10.1016/j.msea.2011.11.045

Google Scholar

[14] A. Kumar, A.K. Swarnakar, M. Chopkar, Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering,, J. Mater. Eng. Perform, vol. 27, p.3304–3314, (2018).

DOI: 10.1007/s11665-018-3409-4

Google Scholar

[15] A. Kumar, P. Dhekne, A. Kumar, M. Kumar, Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys,, Mater. Lett., vol. 188, pp.73-76, (2017).

DOI: 10.1016/j.matlet.2016.10.099

Google Scholar

[16] A. Kumar, P. Dhekne, A. Kumar, M. Kumar, A.K. Srivastav, N. Chawake, B.S. Murty, Grain-size-dependent non-monotonic crystallite parameter variation in nanocrystalline W: The role of non-equilibrium grain boundary structure,, Scr. Mater, vol. 98, p.20–23, (2015).

DOI: 10.1016/j.scriptamat.2014.11.005

Google Scholar

[17] H.X. Sui, M. Zhu, M. Qi, G.B. Li, D.Z. Yang, The enhancement of solid solubility limits of AlCo intermetallic compound by high-energy ball grinding,, J. Appl. Phys., vol. 71, p.2945–2949, (1992).

DOI: 10.1063/1.351028

Google Scholar

[18] Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, S. Yang, Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique,, Mater. Des., vol. 44, p.535–539, (2013).

DOI: 10.1016/j.matdes.2012.08.048

Google Scholar

[19] F. Graner, J. a Glazier, Mechanically Driven Alloying of Immiscible Elements,, Phys. Rev. Lett., vol. 69, p.2013–2016, (1992).

Google Scholar

[20] A. Kumar, A.K. Swarnakar, A. Basu, M. Chopkar, Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSixhigh entropy alloys,, J. Alloys Compd., vol. 748, p.889–897, (2018).

DOI: 10.1016/j.jallcom.2018.03.242

Google Scholar