[1]
B. Raj, K.B.S. Rao, Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors, J. Nucl. Mater. 386–388 (2009) 935–943.
DOI: 10.1016/j.jnucmat.2008.12.320
Google Scholar
[2]
S. Praveen, A. Anupam, R. Tilak, R.S. Kottada, Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media, Mater. Chem. Phys. 210 (2018) 57–61.
DOI: 10.1016/j.matchemphys.2017.10.040
Google Scholar
[3]
Y.L. Zhao, T. Yang, J.H. Zhu, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates, Scr. Mater. 148 (2018) 51–55.
DOI: 10.1016/j.scriptamat.2018.01.028
Google Scholar
[4]
S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Improvement of Creep Strength of 9CrODS Martensitic Steel by Controlling Excess Oxygen and Titanium Concentrations, 46 (2005).
DOI: 10.2320/matertrans.46.487
Google Scholar
[5]
L. Zhang, L. Yu, Y. Liu, C. Liu, H. Li, J. Wu, Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels, Mater. Sci. Eng. A. 695 (2017) 66–73.
DOI: 10.1016/j.msea.2017.04.020
Google Scholar
[6]
K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, Dual-phase high-entropy alloys for high-temperature structural applications, J. Alloys Compd. 728 (2017) 1235–1238.
DOI: 10.1016/j.jallcom.2017.09.089
Google Scholar
[7]
L.C. Tsao, C.S. Chen, C.P. Chu, Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy, Mater. Des. 36 (2012) 854–858.
DOI: 10.1016/j.matdes.2011.04.067
Google Scholar
[8]
R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, K. V. Rajulapati, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods, Acta Mater. 125 (2017) 58–68.
DOI: 10.1016/j.actamat.2016.11.046
Google Scholar
[9]
C.D. Gómez-Esparza, F. Baldenebro-López, L. González-Rodelas, J. Baldenebro-López, R. Martínez-Sánchez, Series of Nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) High-Entropy Alloys produced by Mechanical Alloying, Mater. Res. (2016).
DOI: 10.1590/1980-5373-mr-2015-0668
Google Scholar
[10]
M.P. Phaniraj, D.I. Kim, J.H. Shim, Y.W. Cho, Microstructure development in mechanically alloyed yttria dispersed austenitic steels, Acta Mater. (2009).
DOI: 10.1016/j.actamat.2008.12.026
Google Scholar
[11]
D. Oleszak, A. Antolak-dudka, T. Kulik, High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying, Mater. Lett. 232 (2018) 160–162.
DOI: 10.1016/j.matlet.2018.08.060
Google Scholar
[12]
A. Patra, R. Saxena, S.K. Karak, T. Laha, S.K. Sahoo, Fabrication and characterization of nano-Y2O3 dispersed W-Ni-Mo and W-Ni-Ti-Nb alloys by mechanical alloying and spark plasma sintering, J. Alloys Compd. 707 (2017) 245–250.
DOI: 10.1016/j.jallcom.2016.11.424
Google Scholar
[13]
A. Dwivedi, C.C. Koch, K. V. Rajulapati, On the single phase fcc solid solution in nanocrystalline Cr-Nb-Ti-V-Zn high-entropy alloy, Mater. Lett. 183 (2016) 44–47.
DOI: 10.1016/j.matlet.2016.07.083
Google Scholar