Influence of Temperature on Low Cycle Fatigue and Ratcheting Behavior of SA333 Gr-6 C-Mn Steel

Article Preview

Abstract:

The aim of this investigation is to study the influence of temperature on the cyclic plastic deformation behavior of SA333 Gr-6 steel at two loading conditions. Strain-controlled cyclic loading experiments were carried out at ± 0.5% total strain amplitude, 1×10-3 s-1 strain rate, and temperature varied from RT to 400°C, whereas stress controlled ratcheting experiments were conducted at fixed mean stress (σm) of 50 MPa and stress amplitude (σa) of 400 MPa, 115 MPa s-1 stress rate, and in the temperature range of RT to 350°C. The investigated steel shows cyclic hardening characteristic at DSA temperature regime in both the loading condition. The steel shows lower fatigue lives at 250°C and 300°C temperatures even though plastic strain amplitude is smaller. The ratcheting life of the steel increases and strain accumulation decreases with the increase in temperature up to 300°C and on further increment in temperature ratcheting life get decreased. The steel shows greater cyclic hardening at both the loading conditions at 300°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-160

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Haupt, B. Schinke, Experiments on the ratchetting behavior of AISI 316L (N) austenitic steel at room temperature, ASME J. Eng. Mater. Technol. 118 (1996) 281–284.

DOI: 10.1115/1.2806806

Google Scholar

[2] M. Mizuno, Y. Mima, M. Abdel-Karim, N. Ohno, Uniaxial ratchetting of 316FR steel at room temperature- part 1: experiments, Trans. ASME J. Eng. Mater. Technol. 122 (2000) 29–34.

DOI: 10.1115/1.482761

Google Scholar

[3] N. Ohno, M. Abdel-Karim, M. Kobayashi, T. Igari, Ratchetting characteristics of 316FR steel at high temperature, part 1: strain-controlled ratchetting experiments and simulation, Int. J. Plast. 14 (1998) 355–372.

DOI: 10.1016/s0749-6419(98)00009-6

Google Scholar

[4] Y. Jiang, J. Zhang, Benchmark experiments and characteristic cyclic plasticity deformation, Int J Plast. 24 (2008) 1481-1515.

DOI: 10.1016/j.ijplas.2007.10.003

Google Scholar

[5] S.K. Paul, S. Sivaprasad, S. Dhar, S. Tarafder, Simulation of cyclic plastic deformation response in SA333 CeMn steel by a kinematic hardening model, Comput Mater Sci. 48 (2010) 662-671.

DOI: 10.1016/j.commatsci.2010.02.037

Google Scholar

[6] K.G. Samuel, V. Ganesan, K.B.S. Rao, S.L. Mannan, HS Kushwaha, Strain controlled LCF behaviour of SA-333 Gr 6 piping material in the range 298–673 K, Int. J. Pres. Ves. Pip. 81 (2004) 973-981.

DOI: 10.1016/j.ijpvp.2004.02.012

Google Scholar

[7] S. Sivaprasad, H.N. Bar, S.K. Gupta, P. Arora, V. Bhasin, S. Tarafder, A comparative assessment of cyclic deformation behaviour in SA333 Gr. 6 steel using solid, hollow specimens under axial and shear strain paths, Int. J. Fat. 61 (2014) 76-86.

DOI: 10.1016/j.ijfatigue.2013.11.005

Google Scholar

[8] S.K. Paul, S. Sivaprasad, S. Dhar, S. Tarafder, Cyclic plastic deformation behavior in SA333 Gr. 6 C–Mn steel, Mater. Sci. and Eng. A. 528 (2011) 7341-7349.

DOI: 10.1016/j.msea.2011.06.009

Google Scholar

[9] S.G. Hong, S.B. Lee, Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel, J. Nucl. Mater. 340 (2005) 307-314.

DOI: 10.1016/j.jnucmat.2004.12.012

Google Scholar

[10] Z. Huang, D. Wagner, C. Bathias, Some metallurgical aspects of Dynamic Strain Aging effect on the Low Cycle Fatigue behavior of C–Mn steels, Int. J. Fat. 80 (2015) 113-120.

DOI: 10.1016/j.ijfatigue.2015.04.008

Google Scholar

[11] S. Sivaprasad, S.K. Paul, S.K. Gupta, V. Bhasin, N. Narasaiah, S. Tarafder, Influence of uniaxial ratchetting on low cycle fatigue behviour of SA 333 Gr. 6 C–Mn steel, Int. J. Pres. Ves. Pip. 87 (2010) 464-469.

DOI: 10.1016/j.ijpvp.2010.06.002

Google Scholar

[12] S.K. Paul, S. Sivaprasad, S. Dhar, S. Tarafder, Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction, J. Nucl. Mater. 401 (2010) 17-24.

DOI: 10.1016/j.jnucmat.2010.03.014

Google Scholar

[13] B.O. Lee, I.S. Kim, Dynamic strain aging in the high temperature low cycle fatigue of SA508 Cl.3 forging steel, J. Nucl Mater. 226 (1995) 216–25.

DOI: 10.1016/0022-3115(95)00092-5

Google Scholar

[14] S.L. Mannan, Bull. Mater. Sci. 16 (1993) 561-582.

Google Scholar

[15] K.B.S. Rao, PhD Thesis, Indira Gandhi Centre for Atomic research, Kalpakkam, and University of Madras, Madras, India. (1989).

Google Scholar

[16] K.B.S. Rao, M.G. Castelli, G.P. Allen, J.R. Ellis, A critical assessment of the mechanistic aspects in HAYNES 188 during low-cycle fatigue in the range 25 8C to 1000 8C, Metall Mater Trans A. 28A (1997) 347–361.

DOI: 10.1007/s11661-997-0137-z

Google Scholar

[17] R. Zauter, F. Petry, H.J. Christ, H. Mughrabi, Thermomechanical fatigue of the stainless austenitic steel AISI 304L. In, H Sehitoglu, editor, Thermomechanical fatigue behaviour of the material, ASTM STP 1186. Philadelphia, American Society for Testing of Material. (1993) 70–90.

DOI: 10.1520/stp24250s

Google Scholar

[18] R.V. Miner, M.G. Castelli, Hardening mechanisms in a dynamic strain ageing alloy, HASTELLOY X, during isothermal and thermo-mechanical cyclic deformation, Metall Trans A. 23A (1992) 551.

DOI: 10.1007/bf02801173

Google Scholar

[19] A.H. Cottrell, In: Dislocations and plastic flow in crystals, Oxford University, London, (1953).

Google Scholar

[20] P. Rodriguez, Bull. Mater. Sci. 6 (1984) 653-663.

Google Scholar

[21] K.K. Ray, K. Dutta, S. Sivaprasad, S. Trafder, Fatigue damage of AISI 304 LN stainless`steel: role of mean stress, Proc. Eng. 2 (2010) 1805-1813.

DOI: 10.1016/j.proeng.2010.03.194

Google Scholar