Development and Characterization of Al2O3 and SiC Reinforced Al-Cu Metal Matrix Hybrid Composites

Article Preview

Abstract:

The present work deals with the synthesis and characterization of Al-Cu-SiC-Al2O3 hybrid metal matrix composite with varying percentage of Al2O3. The synthesized hybrid composite samples were conventionally sintered at two different sintering temperatures i.e. 500°C and 600°C for 1 hr each. SEM investigation predicts the uniform distribution of reinforcing particles. The SEM and XRD results of the sintered composites revealed the presence of a new intermetallic alloy CuAl2 phase along with Al and SiC phases. It is observed that the density and hardness of Al-Cu-SiC-Al2O3 hybrid composite increases with increase in wt % of Al2O3 and sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-208

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.Chawla, Metal matrix composites, third ed., Springer, New York, (2006).

Google Scholar

[2] M.K. Surappa, Aluminium matrix composites: Challanges and opportunities, Sadhana, 28 (2003) 319-334.

DOI: 10.1007/bf02717141

Google Scholar

[3] N.Chawla, Y.L. Shen, Mechanical Behaviour of particle Reinforced Metal Matrix Composites, Adv. Eng. Mater. 3 (2001) 357-370.

DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i

Google Scholar

[4] S.R. Bakshi, D.Lahiri and A.Agarwal, Carbon nanotube reinforced MMCs- a review, Int. Mater. Rev. 55 (2010) 41-62.

Google Scholar

[5] M.Mabuchi, K.Higashi, T.G. Langdon, An investigation of the role of a liquid phase in Al- Cu-Mg metal matrix composites exhibiting high strain rate superplasticity, Acta Metall. Mater. 42 (1994) 1739-1745.

DOI: 10.1016/0956-7151(94)90384-0

Google Scholar

[6] R.P. Nimmer, R.J. Bankert, E.S. Russell, G.A. Smith, Micromechanical modeling of fiber/matrix interface effects in transversely loaded SiC/Ti-6-4 metal matrix composites, j.Compos. Tech.Res. 13(1991) 3-13.

DOI: 10.1520/ctr10068j

Google Scholar

[7] Z.Wang, M.Song, C.Sun, Y.He, Effect of particle size and distribution on the mechanical properties of SiC reinforced Al-Cu alloy composites, Mater.Sci. Eng.A 528 (2011) 1131-1137.

DOI: 10.1016/j.msea.2010.11.028

Google Scholar

[8] X.Teng, W.Chen, D.Huo, I.Shyha, C.Lin, Comparison of cutting mechanism when machining micro and nanoparticles reinforced SiC/Al metal matric composites, Compos. Struct. 203 (2018) 636-647.

DOI: 10.1016/j.compstruct.2018.07.076

Google Scholar

[9] F.Khodabakhshi, A.Simchi, The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3nanocomposites, Mater. Des. 130 (2017) 26-36.

DOI: 10.1016/j.matdes.2017.05.047

Google Scholar

[10] M.Rahimian, N.Ehsani, N.Parvin, H.R. Baharvandi, The effect of sintering temperature and amount of reinforcement on the properties of Al-Al2O3 composite, Mater. Des. 30 (2009) 3333-3337.

DOI: 10.1016/j.matdes.2008.11.027

Google Scholar

[11] H.Yang, T.Gao, Y.Wu, H.Zhang, J.Nie, X.Liu, Microstructural and mechanical properties at both room and high temperature of in-situ TiC reinforced Al-4.5Cu matrix nanocomposite, J.Alloys Compd. 767 (2018) 606-616.

DOI: 10.1016/j.jallcom.2018.07.045

Google Scholar

[12] F.Saba, S.A. Sajjadi, M.H. Sabzevar, F.Zhang, Exploring the reinforcing effect of TiC and CNT in dual reinforced Al-matrix composites, Diamond Relat. Mater. 89 (2018) 180-189.

DOI: 10.1016/j.diamond.2018.09.007

Google Scholar

[13] H.Karakoc, S.Karabulut, R.Citak, Study on mechanical and ballistic performances of boron carbide reinforced Al 6061 Al alloy produced by powder metallurgy, Composites Part B 148 (2018) 68-80.

DOI: 10.1016/j.compositesb.2018.04.043

Google Scholar

[14] Y.H. Celik, K.Secilmis, Investigation of wear behaviours of Al matrix composites reinforced with different B4Crate produced by powder metallurgy method, Adv. Powder Technol. 28 (2017) 2218-2224.

DOI: 10.1016/j.apt.2017.06.002

Google Scholar

[15] X.Liu, C.Li, J.Eckert, K.G. Prashanth, O.Renk, L.Teng, Y.Liu, R.Bao, J.Tao, T.Shen, J.Yi, Microstructure evaluation and mechanical properties of carbon nanotube reinforced Al matrix composites, Mater. Charact. 133 (2017) 122-132.

DOI: 10.1016/j.matchar.2017.09.036

Google Scholar

[16] S. S. Murugan, V.Jegan, M.Velmurugan, Mechanical properties of SiC, Al2O3 reinforced Al 6061-T6 hybrid matrix composite, J. Inst. Eng. India Ser. D 99 (2017) 71-77.

DOI: 10.1007/s40033-017-0142-3

Google Scholar

[17] A.Ahmadi, M.R. Toroghinejad, A. Najafizadeh, Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process, Mater. Des. 53 (2014) 13–19.

DOI: 10.1016/j.matdes.2013.06.064

Google Scholar

[18] F. Khodabakhshi, A. Simchi, The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites, Mater. Des.130 (2017) 26–36.

DOI: 10.1016/j.matdes.2017.05.047

Google Scholar

[19] Felipe de la Rosa, J.R. Romero-Romero, J.L. Lopez-Miranda, A.G. Hernandez-Torres, G. Rosas, Phase transformation of the CuAl2 intermetallic alloy during high-energy ball-milling, Intermetal. 61 (2015) 51-55.

DOI: 10.1016/j.intermet.2015.02.015

Google Scholar