Temperature and Loading Rate Effect on the Load-Displacement Response of Metal-Metallic Glass (Al-Cu50Zr50) Layered Structure during Nano-Indentation

Article Preview

Abstract:

Molecular dynamics (MD) simulations of metal-metallic glass (Al-Cu50Zr50) multilayer during nanoindentation is carried out to investigate the load-displacement response, mechanical properties and deformation mechanisms. The indentation study is carried out at temperatures in the range of cryogenic to room temperature (10 K-300 K). The indenter speeds are varied between 0.5-5 Å/ps to study the effect of loading rate. The interaction between Al-Cu-Zr atoms are defined by EAM (Embedded Atom Method) potential. A sample size of 200 Å × 200 Å × 200 Å (in x y z-direction) comprising of 538538 atoms is used for nanoindentation. P P S boundary condition (BC) in x y z direction and NVT ensemble are used. We observed a peak load of 117 nN, at a temperature of 10 K with a loading rate of 5 Å/ps. We found that as the loading rate increase, the peak load also increases. As anticipated, the increase in temperature decreases the strength of the multilayer. The atomic displacement vector plots reveal that MG act as hurdles to the movement of dislocations nucleated at the interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-336

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Zhang, Y. Kou, Y.Y. Xia, X. Zhang, Modulation of strength and plasticity of multiscale Ni/Cu laminated composites, Mater. Sci. Eng. A. 636 (2015) 216–220.

DOI: 10.1016/j.msea.2015.03.075

Google Scholar

[2] X.Y. Zhu, X.J. Liu, R.L. Zong, F. Zeng, F. Pan, Microstructure and mechanical properties of nanoscale Cu/Ni multilayers, Mater. Sci. Eng. A. 527 (2010) 1243–1248.

DOI: 10.1016/j.msea.2009.09.058

Google Scholar

[3] W.Z. Han, E.K. Cerreta, N.A. Mara, I.J. Beyerlein, J.S. Carpenter, S.J. Zheng, C.P. Trujillo, P.O. Dickerson, A. Misra, Deformation and failure of shocked bulk Cu–Nb nanolaminates, Acta Mater. 63 (2014) 150–161.

DOI: 10.1016/j.actamat.2013.10.019

Google Scholar

[4] S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, N.A. Mara, High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces, Nat. Commun. 4 (2013) 1696.

DOI: 10.1038/ncomms2651

Google Scholar

[5] W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, N.A. Mara, Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites, Appl. Phys. Lett. 100 (2012) 11911.

DOI: 10.1063/1.3675447

Google Scholar

[6] A. Inoue, A. Takeuchi, Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys, Mater. Sci. Eng. A. 375–377 (2004) 16–30.

DOI: 10.1016/j.msea.2003.10.159

Google Scholar

[7] Y. Cui, O.T. Abad, F. Wang, P. Huang, T.-J. Lu, K.-W. Xu, J. Wang, Plastic deformation modes of CuZr/Cu multilayers, Sci. Rep. 6 (2016) 23306.

DOI: 10.1038/srep23306

Google Scholar

[8] H.Y. Song, J.J. Xu, Y.G. Zhang, S. Li, D.H. Wang, Y.L. Li, Molecular dynamics study of deformation behavior of crystalline Cu/amorphous Cu50Zr50 nanolaminates, Mater. Des. 127 (2017) 173–182.

DOI: 10.1016/j.matdes.2017.04.077

Google Scholar

[9] B. Cheng, J.R. Trelewicz, Mechanistic coupling of dislocation and shear transformation zone plasticity in crystalline-amorphous nanolaminates, Acta Mater. 117 (2016) 293–305.

DOI: 10.1016/j.actamat.2016.07.011

Google Scholar

[10] P. Gupta, S. Pal, N. Yedla, Molecular dynamics based cohesive zone modeling of Al (metal)–Cu 50 Zr 50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms, Mater. Des. 105 (2016) 41–50.

DOI: 10.1016/j.matdes.2016.05.054

Google Scholar

[11] P. Gupta, N. Yedla, Dislocation and Structural Studies at Metal–Metallic Glass Interface at Low Temperature, J. Mater. Eng. Perform. 26 (2017) 5694–5704.

DOI: 10.1007/s11665-017-3026-7

Google Scholar

[12] N. Yedla, S. Ghosh, Nature of atomic trajectories and convective flow during plastic deformation of amorphous Cu50Zr50 alloy at room temperature-classical molecular dynamics studies, Intermetallics. 80 (2017) 40–47.

DOI: 10.1016/j.intermet.2016.10.003

Google Scholar

[13] N. Yedla, P. Gupta, T.Y. Ng, K.R. Geethalakshmi, Effect of loading direction and defects on the strength and fracture behavior of biphenylene based graphene monolayer, Mater. Chem. Phys. 202 (2017) 127–135.

DOI: 10.1016/j.matchemphys.2017.09.016

Google Scholar

[14] L. Ward, D. Miracle, W. Windl, O.N. Senkov, K. Flores, Structural evolution and kinetics in Cu-Zr metallic liquids from molecular dynamics simulations, Phys. Rev. B. 88 (2013) 134205.

DOI: 10.1103/physrevb.88.134205

Google Scholar

[15] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19.

Google Scholar

[16] X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B. 69 (2004) 144113.

DOI: 10.1103/physrevb.69.144113

Google Scholar

[17] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2010) 15012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[18] C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B - Condens. Matter Mater. Phys. 58 (1998) 11085–11088.

DOI: 10.1103/physrevb.58.11085

Google Scholar

[19] X. Du, H. Zhao, L. Zhang, Y. Yang, H. Xu, H. Fu, L. Li, Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature, Sci. Rep. 5 (2015) 16275.

DOI: 10.1038/srep16275

Google Scholar

[20] T. Fu, X. Peng, X. Chen, S. Weng, N. Hu, Q. Li, Z. Wang, Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter, Sci. Rep. 6 (2016) 35665.

DOI: 10.1038/srep35665

Google Scholar

[21] G.E. Dieter, Mechanical metallurgy, 3rd ed., McGraw-Hill, New York, (2015).

Google Scholar