[1]
B. Zhang, Y. Kou, Y.Y. Xia, X. Zhang, Modulation of strength and plasticity of multiscale Ni/Cu laminated composites, Mater. Sci. Eng. A. 636 (2015) 216–220.
DOI: 10.1016/j.msea.2015.03.075
Google Scholar
[2]
X.Y. Zhu, X.J. Liu, R.L. Zong, F. Zeng, F. Pan, Microstructure and mechanical properties of nanoscale Cu/Ni multilayers, Mater. Sci. Eng. A. 527 (2010) 1243–1248.
DOI: 10.1016/j.msea.2009.09.058
Google Scholar
[3]
W.Z. Han, E.K. Cerreta, N.A. Mara, I.J. Beyerlein, J.S. Carpenter, S.J. Zheng, C.P. Trujillo, P.O. Dickerson, A. Misra, Deformation and failure of shocked bulk Cu–Nb nanolaminates, Acta Mater. 63 (2014) 150–161.
DOI: 10.1016/j.actamat.2013.10.019
Google Scholar
[4]
S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, N.A. Mara, High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces, Nat. Commun. 4 (2013) 1696.
DOI: 10.1038/ncomms2651
Google Scholar
[5]
W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, N.A. Mara, Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites, Appl. Phys. Lett. 100 (2012) 11911.
DOI: 10.1063/1.3675447
Google Scholar
[6]
A. Inoue, A. Takeuchi, Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys, Mater. Sci. Eng. A. 375–377 (2004) 16–30.
DOI: 10.1016/j.msea.2003.10.159
Google Scholar
[7]
Y. Cui, O.T. Abad, F. Wang, P. Huang, T.-J. Lu, K.-W. Xu, J. Wang, Plastic deformation modes of CuZr/Cu multilayers, Sci. Rep. 6 (2016) 23306.
DOI: 10.1038/srep23306
Google Scholar
[8]
H.Y. Song, J.J. Xu, Y.G. Zhang, S. Li, D.H. Wang, Y.L. Li, Molecular dynamics study of deformation behavior of crystalline Cu/amorphous Cu50Zr50 nanolaminates, Mater. Des. 127 (2017) 173–182.
DOI: 10.1016/j.matdes.2017.04.077
Google Scholar
[9]
B. Cheng, J.R. Trelewicz, Mechanistic coupling of dislocation and shear transformation zone plasticity in crystalline-amorphous nanolaminates, Acta Mater. 117 (2016) 293–305.
DOI: 10.1016/j.actamat.2016.07.011
Google Scholar
[10]
P. Gupta, S. Pal, N. Yedla, Molecular dynamics based cohesive zone modeling of Al (metal)–Cu 50 Zr 50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms, Mater. Des. 105 (2016) 41–50.
DOI: 10.1016/j.matdes.2016.05.054
Google Scholar
[11]
P. Gupta, N. Yedla, Dislocation and Structural Studies at Metal–Metallic Glass Interface at Low Temperature, J. Mater. Eng. Perform. 26 (2017) 5694–5704.
DOI: 10.1007/s11665-017-3026-7
Google Scholar
[12]
N. Yedla, S. Ghosh, Nature of atomic trajectories and convective flow during plastic deformation of amorphous Cu50Zr50 alloy at room temperature-classical molecular dynamics studies, Intermetallics. 80 (2017) 40–47.
DOI: 10.1016/j.intermet.2016.10.003
Google Scholar
[13]
N. Yedla, P. Gupta, T.Y. Ng, K.R. Geethalakshmi, Effect of loading direction and defects on the strength and fracture behavior of biphenylene based graphene monolayer, Mater. Chem. Phys. 202 (2017) 127–135.
DOI: 10.1016/j.matchemphys.2017.09.016
Google Scholar
[14]
L. Ward, D. Miracle, W. Windl, O.N. Senkov, K. Flores, Structural evolution and kinetics in Cu-Zr metallic liquids from molecular dynamics simulations, Phys. Rev. B. 88 (2013) 134205.
DOI: 10.1103/physrevb.88.134205
Google Scholar
[15]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19.
Google Scholar
[16]
X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B. 69 (2004) 144113.
DOI: 10.1103/physrevb.69.144113
Google Scholar
[17]
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2010) 15012.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[18]
C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B - Condens. Matter Mater. Phys. 58 (1998) 11085–11088.
DOI: 10.1103/physrevb.58.11085
Google Scholar
[19]
X. Du, H. Zhao, L. Zhang, Y. Yang, H. Xu, H. Fu, L. Li, Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature, Sci. Rep. 5 (2015) 16275.
DOI: 10.1038/srep16275
Google Scholar
[20]
T. Fu, X. Peng, X. Chen, S. Weng, N. Hu, Q. Li, Z. Wang, Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter, Sci. Rep. 6 (2016) 35665.
DOI: 10.1038/srep35665
Google Scholar
[21]
G.E. Dieter, Mechanical metallurgy, 3rd ed., McGraw-Hill, New York, (2015).
Google Scholar