Structural and Behavioural Analysis of As2Se3, TeO2, SiC, SiO2 and Si3N4 for Photonic Application

Article Preview

Abstract:

The materials significantly influence the structural, optical and photoelectrical characteristic. Materials such as Arsenic selenide, Tellurite Glass, Silicon carbide, Silicon dioxide and Silicon nitride are investigated through finite element method. The models are established to analyse the structural behaviour of polarization preserving fibre of proposed materials. Photoelectric characteristic determines guided properties of photon particles. Refractive index of the materials influences the properties of photonic crystal fibre. A Polarization Splitter based hexagonal structure is proposed, where inner ring of cladding is in elliptical shape air holes and outer rings are in circular air holes. It provides highly negative dispersion, low confinement loss and high nonlinear coefficient between 1µm to 2µm wide wavelength ranges. The dispersion result shows -2000 db/km-nm at 1.55µm wavelength. Polarization beam splitters photonic crystal fiber characteristics of proposed materials are analysed with same structural parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

360-368

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zejun Zhang, Yasuhide Tsuji, Masashi Eguchi, Design of Polarization Splitter with Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers, IEEE Photonics Technology Letters 26 (2014) 541-543.

DOI: 10.1109/lpt.2013.2296592

Google Scholar

[2] J.C. Knight, T.A. Birks, P.St. J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (1996) 1547–1549.

DOI: 10.1364/ol.21.001547

Google Scholar

[3] P.St.J. Russell, Photonic-crystal fibers, J. Ligthw. Technol. 24 (2006) 4729–4749.

Google Scholar

[4] HeFeng-tao, Shi Wen-juan, Zhang Jian-lei, Hui Zhan-qiang, Zhan Fei, Polarization splitter based on dual-core photonic crystal fiber with tellurite glass, Optik 164 (2018) 624-631.

DOI: 10.1016/j.ijleo.2018.03.061

Google Scholar

[5] Lin Zhang, Changxi Yang, Changyuan Yu, Ting Luo, Alan E. Willner, PCF-Based Polarization Splitters With Simplified Structures, Journal of Lightwave Technology 23 (2005) 3558-3565.

DOI: 10.1109/jlt.2005.857779

Google Scholar

[6] Zheng Zhong, Zejun Zhang, Yasuhide Tsuji, Masashi Eguchi, Study on Crosstalk-Free Polarization Splitter Based on Square Lattice Single Polarization Photonic Crystal Fiber, IEEE Journal of Quantum Electronics 52 (2016) 1-7.

DOI: 10.1109/jqe.2016.2549509

Google Scholar

[7] A.C. van Popta, R.G. DeCorby, C.J. Haugen, T. Robinson, J.N. McMullin, Photoinduced refractive index change in As2Se3 by 633nm illumination, Optics Express 639. 10 (2002) 639-644.

DOI: 10.1364/oe.10.000639

Google Scholar

[8] William S Rodney, Irving H. Malitson, Thomas A. King, Refractive index of arsenic trisulfide, Optical Society of America 48 (1958) 633-636.

DOI: 10.1364/josa.48.000633

Google Scholar

[9] C. Corrales, J.B. Ramfrez-Malo, J. Fernandez-Pena, P. Villares, R. Swanepoel, E. Marquez, Determining the refractive index and average thickness of As2Se3 semiconducting glass films from wavelength measurements only, Applied Optics 34 (1995) 7907-7913.

DOI: 10.1364/ao.34.007907

Google Scholar

[10] Harshana G. Dantanarayana, Nabil Abdel-Moneim, Zhuoqi Tang, Lukasz Sojka, Slawomir Sujecki, David Furniss, Angela B. Seddon, Irnis Kubat, Ole Bang, Trevor M. Benson, Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation, O.S.A. 4 (2014) 1444-1455.

DOI: 10.1364/ome.4.001444

Google Scholar

[11] Wu Yuan, 2-10 μm Mid-infrared Supercontinuum Generation in As2Se3 photonic crystal fiber, Laser Physics Letters 10 (2013) 1-6.

DOI: 10.1364/fio.2013.ftu5b.3

Google Scholar

[12] Vahid G. Ta'eed, Neil J. Baker, Libin Fu, Klaus Finsterbusch, Michael R.E. Lamont, David J. Moss, Hong C. Nguyen, Benjamin J. Eggleton, Duk Yong Choi, Steven Madden, Barry Luther-Davies, Ultrafast all-optical chalcogenide glass photonic circuits, O.S.A. 15 (2007) 9205-9221.

DOI: 10.1364/oe.15.009205

Google Scholar

[13] Gorachand Ghosh, Sellmeier coefficients and chromatic dispersion for some tellurite glasses, J.Am. Ceram. Soc. 78 (1995) 2828-2830.

DOI: 10.1111/j.1151-2916.1995.tb08060.x

Google Scholar

[14] H.R.D. Sunak, S.P. Bastien, Refractive index and material dispersion interpolation of doped silica in the 0.6-1.8 mu m wavelength region, IEEE Photonics Technology Letters,1 (1989) 142– 145.

DOI: 10.1109/68.36016

Google Scholar

[15] Siwei Li,, Yongcai Li, Hongrui Xiao, Xiangdong Li, Qi Wang, Ming Tang, Huibin Tu, Jinqiu Huang, Lifu Chen, Zhiyang Y., Oxidation behavior of Si3N4 fibers derived from polycarbosilane, Corrosion Science 136 (2018) 9-17.

DOI: 10.1016/j.corsci.2018.02.032

Google Scholar

[16] Wang Zhi, Jian Shui-Sheng, Lou Shu-Qin,Ren Guo-Bin, Model interference in dual-core photonic crystal fiber, Acta phys. Sin. 53 (2004) 2600-2606.

DOI: 10.7498/aps.53.1856

Google Scholar

[17] Feng Zhang, John W.Y. Lit, Polarization characteristics of double-clad elliptical fibers, Applied Optics 29 (1990) 5336-5342.

DOI: 10.1364/ao.29.005336

Google Scholar

[18] Niels Asger Mortensen, Effective area of photonic crystal fibers, Optics Express 10 (2002) 341-348.

DOI: 10.1364/oe.10.000341

Google Scholar