Investigation on the Optical, Electrical and Dielectric Properties of La0.7Ca0.3MnO3 (LCMO) Via. Different Routes: A Comparative Analysis of Micro and Nanoparticles

Article Preview

Abstract:

In the proceeding way of material research in the field of manganites, LCMO micro and nanoparticles are synthesized via. the solid-state reaction route, glycine-nitrate combustion method respectively. The phase confirmation is done by XRD, FT-IR technique and the surface morphology viewed by Scanning Electron Microscope (SEM). The energy band gap obtained from Diffuse Reflectance Spectroscopy clearly suggests that the band gap of nanoparticles (2.06eV) is larger than that of the microparticles (1.58eV). Both samples comprise of wide band-gap semiconductor, so the refractive index is calculated using Herve and Vandamme relation. The impedance spectroscopy and dielectric properties of the two samples are studied from room temperature to 100oC over the frequency range 102-106 Hz. The Cole-Cole plot of impedance is fitted using the RC-Circuit R(QgRg)(QgbRgb)(CRin). The dielectric property is found to be enhanced in nanoparticles as compared to the microparticles. The findings suggest the nanoparticles be promising candidates in the field of high frequency devices as compared to micro.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

390-396

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. R. Nandan, A. Rubankumar, and S. Kalainathan, Structural, dielectric and impedance studies of polycrystalline La0.6Gd0.2Ca0.2MnO3, AIP Conference Proceedings. 1731 (2016) 050127.

DOI: 10.1063/1.4947781

Google Scholar

[2] R. J. Cava, Dielectric materials for applications in microwave communications, J. Mater. Chem. 11 (2001) 54-62.

Google Scholar

[3] K. L. Routray, B. Sahoo, and D. Behera, Structural, dielectric and magnetic properties of nano-sized CoFe2O3 employing various synthesis techniques for high frequency and magneto recording devices: a comparative analysis, Mater.Res.Express. 5 (2018) 085016.

DOI: 10.1088/2053-1591/aad310

Google Scholar

[4] C. S. Hong, W. S. Kim, and N. H. Hur, Transport and magnetic properties in the ferromagnetic regime of La1-xCaxMnO3, PHYSICAL REVIEW B. 63 (2001) 092504.

Google Scholar

[5] J. Y. T. Wei, N. C. Yeh, and R. P. Vasquez, Tunneling Evidence of Half-Metallic Ferromagnetism in La0.7Ca0.3MnO3, Phys. Rev. Lett. 79 (1997) 5150-5153.

Google Scholar

[6] L. E. Hueso, P. Sande, D. R. Miguens, J. Rivas, F. Rivadulla, and M. A. Lopez-Quintela, Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3−δ nanoparticles synthesized by sol–gel techniques, J. Appl. Phys. 91 (2002) 9943-9947.

DOI: 10.1063/1.1476972

Google Scholar

[7] M. H. Phan, S. C. Yu, N. H. Hur, and Y. H. Jeong, Large magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal, J. Appl. Phys. 96 (2004) 1154-1158.

DOI: 10.1063/1.1762710

Google Scholar

[8] A. Arabi, M. Fazli, and M. H. Ehsani, Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation, Bull. Mater. Sci. 41 (2018) 77.

DOI: 10.1007/s12034-018-1590-6

Google Scholar

[9] P. Botta, J. Mira, A. Fondado, and J.A. Rivas, Dielectric behavior of La1-xCaxMnO3 (0.4 < x < 0.5), Bol. Soc. Esp. Ceram. 45 (2006) 163-168.

Google Scholar

[10] K. Li, R. Cheng, S. Wang and Y. Zhang, Infrared transmittance spectra of the granular perovskite La2/3Ca1/3MnO3, J. Phys.: Condens. Matter. 10 (1998) 4315–4322.

DOI: 10.1088/0953-8984/10/19/019

Google Scholar

[11] P. M. Aneesh, K. M. Krishna, M.K. Jayaraj, Hydrothermal Synthesis and Characterization of Undoped and Eu-Doped ZnGa2O4 Nanoparticles, J. Electrochem. Soc. 156 (2009) K33.

DOI: 10.1149/1.3070662

Google Scholar

[12] A. O. Turky, M. M. Rashad, A. M. Hassan, E. M. Elnaggar and M. Bechelany, Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1-xSrxMnO3(LSM) nanopowders prepared via a co-precipitation method with different Sr2+ ion contents, RSC Adv. 6 (2016) 17980-17986.

DOI: 10.1039/c5ra27461c

Google Scholar

[13] S. EL. Kossi, Ch. Rayssi, AH. Dhahri, J. Dhahri, K. Khirouni, High dielectric constant and relaxor behavior in La0.5Sr0.25Na0.05Mn0.8Ti0.2O3 manganite, Journal of Alloys and compounds. 767 (2018) 456-463.

DOI: 10.1016/j.jallcom.2018.07.056

Google Scholar

[14] Y. Ben Taher, A. Oueslati, N. K. Maaloul, K. Khirouni, M. Gargouri, Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound, Appl. Phys. A. 120 (2015) 1537–1543.

DOI: 10.1007/s00339-015-9353-3

Google Scholar